研究生: |
李青翰 Chin-Han Lee |
---|---|
論文名稱: |
非同步分碼多工系統下相關矩陣之特徵值動差計算 The Eigenvalue Moment of Correlation Matrix in Asynchronous CDMA System |
指導教授: |
黃建華
Chien-Hwa Hwang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 通訊工程研究所 Communications Engineering |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 52 |
中文關鍵詞: | 分碼多工 、非同步 、相關矩陣 、動差 、大規模系統 、單次方法 |
外文關鍵詞: | CDMA, Asynchronous, Correlation matrix, Moment, Large system, One-shot approach |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
長碼直序編碼分碼多工(DS-CDMA)系統方面,於近年來已有多篇論文提出相關方面研究。然而,大部分的研究仍著重於同步分碼多工系統,而非同步分碼多工系統方面仍有許多部分有待研究。在本篇論文中,我們所考慮的是在長碼半同步(quasi-synchronous)分碼多工系統下其相關矩陣之特徵值動差如何計算,其中半同步是指用戶與用戶之間其展頻碼其切片的邊界相互對齊但其符號的邊界則沒有互相對齊。在一個長碼系統中,隨機的展頻碼會造成分析上的困難,因此大規模系統的假設就變為必須的,其中使用者數量K與展頻增益N,都假設趨近於無窮大且 的比值為一個定值。
在同步分碼多工系統中,線性多用戶接收器其輸出的訊號與干擾雜訊比值(SINR)與展頻碼之間的動差矩陣的動差計算有關。我們首先利用單次方法(one-shot approach)將半同歩分碼多工系統轉變成同步的系統。經由這個動作後,除了所欲解調的用戶外,系統中每個用戶將被拆分為兩個只有單邊展頻碼的虛擬用戶,即用戶之展頻碼可能由左側開始亦或是右側,因此,系統中的用戶數量將變為2K-1。而為了分析單邊展頻碼所造成的效應,將利用圖示法來解決此問題。圖示法的發展正是為了計算單邊展頻碼其相關矩陣的動差,將動差計算的問題簡單化。因此在大規模系統的假設下,圖示法在解決動差計算的問題上將非常有效率。
The analysis of long-code direct sequence-code division multiple access (DS-CDMA) system has been well addressed in recent years. However, most work concentrates on synchronous systems, which leaves the study of asynchronous sys- tems unexplored. In this thesis, we consider the eigenvalue moment of correlation matrix in a long-code quasi-synchronous CDMA system, where quasi-synchronous denotes users’ chip boundaries are aligned but symbol boundaries are not. Since the random spreading in a long-code system makes the analysis very difficult, a large system assumption is made, where both the user number K and the spreading gain N approach infinity while their ratio K/N is kept as a constant.
It is known that, in synchronous CDMA system, the output SINR of a linear multiuser receiver is related to the moment computation of spreading codes’ cor- relation matrix. We first make use of the one-shot approach to render a quasi-syn- chronous system into a synchronous one. By doing so, each user of quasi-synchr- onous CDMA is separated into two virtual ones in synchronous CDMA with their spreading codes being single-sided. To account for the effect of single-sided spreading codes, a graphical approach is developed for the moment computation of single-sided spreading codes’ correlation matrix. It is shown that, with the large system assumption, the graphical method is very efficient in solving the moment computation problem.
參考文獻
[1] Dag Johnson, “Some Limit Theorems for the Eigenvalues of the Sample Covariance Matrix”, Multivariate Analysis, 12, pp. 1-38, P. R. Krishnaiah, 1982.
[2] Arharov , L. V., “Limit Theorems For the Characteristical Roots of a Sample Covariance Matrix”, Soviet Math. Dokl., 12, pp 1206-1209, 1971.
[3] [a]Wigner , E. P., “Characteristic Vectors of Bordered Matrices with Infinite Dimensions”, Ann. of Math., 62, pp. 548-564, 1955. [b] Wigner, E. P., “On the Distributions of the Roots of Certain Symmetric Matrices”, Ann. of Math., 67, pp. 325-327, 1958.
[4] Grenander, U., Probabilities on Algebraic Structures, Almqvist & Wiksell, Stockholm, 1963.
[5] Arnold, L., “On the Asymptotic Distribution of the Eigenvalues of Random Matrices”, J. Math. Anal. Appl, 20, pp. 262-268, 1967.
[6] Johnson, D., “Some Limit Theorems for the Eigenvalues of a Sample Covariance Matrix”, Technical Report No.6, Department of Mathematics, Uppsala University.
[7] C.H Hwang, C.H Kim and C.-C. Jay Kao, “A Graph Approach to Performance Analysis of Multistage Linear Parallel Interference Canceller in Long-Code CDMA System”, University of Southern California and Seoul National University, Doctor, June 3, 2002.
[8] Michael L. Honig, “Performance of Reduced-Rank Linear Interference Suppression,” IEEE Trans. Infor. Theory, vol.47, pp.1928-1946, July 2001.