簡易檢索 / 詳目顯示

研究生: 田曜丞
Tien, Yao Cheng
論文名稱: 藉由閘極非對稱耦合量子井的單光子發射器
A single photon emitter implemented by electrostatically-gate asymmetric coupled quantum well
指導教授: 鄭克勇
Cheng, Keh Yung
那允中
Na, Neil
口試委員: 鄭舜仁
Cheng, Shuenn Ren
吳玉書
Wu, Yu Shu
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2015
畢業學年度: 104
語文別: 英文
論文頁數: 41
中文關鍵詞: 單光子量子井量子通訊
外文關鍵詞: single photon, qunatum well, quantum information
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們模擬極化激子基於鋁砷化鎵,非對稱量子耦合井在二維垂直靜電場。我們理論呈現發射單光子在工程合理考慮下的陷阱大小與深度。由於樣品獨特特性如位置幾何可以藉由微影精確控制單光子發射器可以在量子通訊下新的應用。


    We present the modeling of dipolar excitons in AlGaAs based, asymmetric coupled quantum wells with a vertical electric field induced two-dimensional electrostatic trap. We theoretically show that when the trap size and depth are carefully engineered, it is possible for the system to enter an exciton blockade regime in which single photon emissions can be obtained. Due to the unique properties such as the trap geometry and position can be precisely defined by photolithography, the proposed single photon emitter may find new applications in quantum information processing.

    Abstract.................................................. I Acknowledgement.......................................... II Table of Figure...........................................IV Chapter 1: Introduction ...................................1 Chapter 2: Electrostatic trap modeling ....................4 Chapter 3: Spontaneous emission in free space.............13 Chapter 4: Nonlinear interaction of elastic exciton-exciton scattering................................................18 Chapter 5: Summary .......................................23 Appendix A: Deriving the Spontaneous Emission Rate .......24 Appendix B: Exciton-Exciton Interaction Formula...................................................27

    [1] A. Aspuru-Guzik and P. Walther, Photonic quantum simulators, Nat. Physics8,285(2012).
    [2] T. Aichele, G. Reinaudi, and O. Benson, Separating cascaded photons from a single quantum dot: Demonstration of multiplexedquantum cryptography, Phys. Rev.B 70, 235329 (2014).
    [3] A. M. Zagoskin, R. D. Wilson, M. Everitt, S. Savel'ev, D. R. Gulevich, J. Allen, V. K. Dubrovich, and E. Il'ichev, Spatially resolved single photon detection with a quantum sensor array, Sci. Rep.3, 3464 (2013).
    [4] A. Kuhn, M.Hennrich, and G.Rempe, Deterministic Single-Photon Source for Distributed Quantum Networking, Phys. Rev. Lett. 89, 067901 (2002).
    [5] M.Mcke, J.Bochmann, C. Hahn, A.Neuzner, C.Nlleke, A.Reiserer, G.Rempe, and S. Ritter, Generation of single photons from an atom-cavity system, Phys. Rev. A 87,
    063805 (2013).
    [6] M. Keller, B. Lange, K. Hayasaka, W. Lange, and H Walther, A calcium ion in a cavity as a controlled single-photon source, New J. Phys. 6, 95 (2004).
    [7] W. E. Moerner, Single-photon sources based on single moleculesin solids, New J. Phys. 6, 88 (2004).
    [8] B. Lounis and W. E. Moerner, Single photons on demand from asingle molecule at room temperature, Nature 407, 491 (2000).
    [9] N. Mizuochi, T. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, M. Nothaft,
    P. Neumann, A. Gali, F. Jelezko, J. Wrachtrup, and S. Yamasaki, Electrically driven single-photon source at roomtemperature in diamond, Nat. Photon.6, 299303 (2012).
    [10] I.Aharonovich, S.Castelletto, D. A. Simpson, C.-H. Su, A. D. Greentree, and S. Prawer, Prog. Diamond-based single-photon emitters, Rep. Phys. 74, 076501(2011). 34
    [11] C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, Indistinguishable photons from a single-photon device, Nature 419, 594 (2002).
    [12] P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, A Quantum Dot Single-PhotonTurnstile Device, Science 290, 2282 (2000).
    [13]A. Badolato, K. Hennessy, M.Atatüre, J. Dreiser, E. Hu, P. M. Petroff, and A.Imamoğlu, Deterministic Coupling of SingleQuantum Dots to Single Nanocavity Modes, Science 308, 1158 (2005).
    [14]K. Mukai, A. Hirota, and S. Nakashima, Position control of PbS quantum dot using nanohole on silicon substrate processed byscanning probe lithography, Jpn. J. Appl. Phys. 54, 04DJ02 (2015).
    [15]D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard,W. Wiegmann, T. H. Wood, and C. A. Burrus, Band-Edge Electroabsorption in Quantum Well Structures: The Quantum-Confined Stark Effect, Phys. Rev. Lett. 53, 2173 (1984).
    [16]R.Rapaport, G. Chen, S. Simon, O.Mitrofanov, L. Pfeiffer, and P. M. Platzman, Electrostatic traps for dipolar excitons, Phys. Rev. B 72, 075428 (2005).
    [17] T. Byrnes, P.Recher, and Y. Yamamoto, Phys. Mott transitions of excitonpolaritons and indirect excitons in a periodic potential, Rev. B 81, 205312 (2011).
    [18] K. Sivalertporn, L. Mouchliadis, A. L. Ivanov, R. Philp, and E. A. Muljarov, Direct and indirect excitons in semiconductor coupled quantum wells in an applied electric field, Phys. Rev. B 85, 045207 (2012).
    [19] R.P. Leavitt and J. W. Little, Simple method for calculating exciton binding energies in quantum-confined semiconductor structures, Phys. Rev. B. 42, 11774 (1990)
    [20] P. MeystreandM. Sargent III, Elements of QuantumOptics (Springer, Berlin, 35 2010).
    [21] C. Ciuti and V. Savona, Role of the exchange of carriers in elastic exciton-exciton scattering in quantum wells, Phys. Rev. B 58, 7926 (1998).
    [22] G. H. Golub and J. H. Welsch, Math. Calculation of Gauss Quadrature Rules, Comp. 23, 221 (1969).
    [23] F B Hildebrand, Introduction to Numerical Analysis,London, McGraw-Hill Book Company, Inc(1956)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE