簡易檢索 / 詳目顯示

研究生: 王雅婷
Wang, Ya-Ting
論文名稱: 鉛引發壓水式反應器二次側結構組件發生應力腐蝕龜裂行為的研究
Pb-induced Stress corrosion cracking (SCC) of structural materials in the secondary side of pressurized water reactor
指導教授: 葉宗洸
Yeh, Tsung-Kuang
王美雅
Wang, Mei-Ya
口試委員: 藍貫哲
Lan, Kuan-Che
黃俊源
Huang, Chun-Yuan
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 121
中文關鍵詞: 應力腐蝕龜裂鎳基600合金壓水式反應器低溶氧量氧化鉛濃度
外文關鍵詞: stress corrosion cracking (SCC), nickel-based alloys, pressurized water reactor, low dissolved oxygen value, PbO concentrations
相關次數: 點閱:58下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 針對壓水式反應器(pressurized water reactor, PWR)二次側冷卻水系統,水化學的控制顯得非常重要,避免因為蒸氣產生器的腐蝕造成系統損壞,像是沸騰區域的不純物或是管路內的污泥(Sludge)沈積造成管件內部腐蝕問題的發生。
    蒸氣產生器(Steam generator, SG)二次側環境總是存在著一定程度的鉛,鉛是蒸氣產生器污泥沈積物常見的成分之一,極低濃度的可溶性鉛會導致鎳基合金產生應力腐蝕龜裂(SCC),鉛在劣化過程產生影響並出現在裂縫尖端附近,讓裂縫區域的基材發生局部變化,鉛也可能是破壞保護性氧化層形成的能力,鉛污染可能導致鈍化膜發生變化,導致其發生劣化。
    透過PWR二次側水循環模擬迴路中針對600合金進行notched C-ring 應力腐蝕試驗,透過不同濃度的PbO注入,水環境控制在低溶氧狀態下(~數個ppb)的水化學條件,利用氫氧化銨控制其pH值後,在280 oC溫度下600合金的應力腐蝕龜裂行為分析。探討在280 oC、8.3MPa條件下,不同PbO濃度與固定pH值的水環境對於600合金SCC裂縫起始與成長之影響。


    For the secondary cooling system of the pressurized water reactor, the control of water chemistry condition is very important. Adjusting the water chemistry condition can prevent the corrosion of the steam generator caused by the impurities in the boiling area or sludge in the pipeline (Sludge) deposits.
    In the secondary side of steam generators, the presence of lead is one of the common compositions of sludge deposits. The low concentration of soluble lead can cause stress corrosion cracking (SCC) in nickel-based alloys. Lead may contribute to the severe impacts near the tip of crack in the degradation process. In addition, it may break the formation of protective oxide layer and lead to the degradation of the passive films.
    The aim of this study is to investigate the impact of soluble lead concentration on SCC behavior of Alloy 600 in the simulated PWR secondary side water chemistry circuit. The stress corrosion cracking behavior was conducted by notched C-Ring method at the temperature of 280 oC and the pressure of 8.3 MPa. The water chemistry condition was controlled under specific conductivity and pH value by injecting ammonium hydroxide and low dissolved oxygen value(~several ppb) with different PbO concentrations. In addition, the effect of heat treatment process on SCC behavior of Alloy 600 was also discussed in the same environments. The SCC tests were followed by a detailed characterization on the microstructure and the distribution and growth of the cracks generated on the surface of Alloy 600 samples.

    摘要 1 Abstract 2 目錄 5 圖目錄 8 表目錄 13 第一章 緒論 14 1.1 前言 14 1.2 研究動機與目的 15 第二章 文獻回顧 18 2.1 應力腐蝕龜裂 18 2.1.1形成要素 18 2.1.2龜裂過程 20 2.1.3龜裂機制 22 2.2 壓水式反應器二次側的腐蝕劣化 27 2.3 壓水式反應器結構組件材料 33 2.4 鉛對鎳基合金鈍化膜的影響 35 2.5 表面處理對應力腐蝕龜裂的影響 38 2.6 鎳基合金的應力腐蝕龜裂 43 2.7 氮化鈦析出物對裂縫起始的影響 49 2.8鎳基合金氧化膜結構分析 52 第三章 實驗規劃 56 3.1實驗流程與水化學系統條件設計 56 3.2 水化學條件 58 3.3 實驗設備 58 3.4 試片熱處理 59 3.5 試片製備 60 3.6 C-Ring 應力腐蝕試驗 61 3.7 C-Ring 試片疲勞預裂 62 3.8 試片表面分析 64 3.8.1 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 64 3.8.2 能量散佈 X 光分析儀(EDS) 65 3.9 雷射拉曼光譜儀(Raman) 66 第四章 結果與討論 69 4.1 應力腐蝕龜裂的表面分析-低濃度鉛 69 4.1.1 預裂週期 69 4.1.2 固溶退火熱處理 74 4.1.3 單階段時效熱處理 82 4.2 應力腐蝕龜裂的表面分析-高濃度鉛 90 4.2.1 固溶退火熱處理 90 4.2.2 單階段時效熱處理 99 4.2 氧化膜分析 108 4.2.1 低濃度鉛 108 4.2.2 高濃度鉛 109 第五章 結論 111 第六章 未來研究規劃 113 參考文獻 114

    [1] “Steam Generator Management Program: Steam Generator Progress Report – Revision 17”, EPRI, Palo Alto, CA, 2009. 1019047.
    [2] S.W., Lai, T.K., Yeh, M.Y., Wang, “Study on Corrosion Prevention of Corrosion Degradation on Secondary Side Components of Pressurized Water Reactor,” Symposium on Water Chemistry and Corrosion in Nuclear Power Plants in Asia, Seoul, Korea, September 24-27, 2019.
    [3] B.T., Lu, J.L., Luo, B., Peng, A., Palani, Y.C., Lu. 2009. Condition for lead-induced corrosion of Alloy 690 in an alkaline steam generator crevice solution.
    [4] B.T., Lu, J.L., Luo, Y.C., Lu. 2013. Effects of pH on lead-induced passivity degradation of nuclear steam generator tubing alloy in high temperature crevice chemistries. Electrochim Acta. 87:824-838.
    [5] B.T., Lu, J.L., Luo, Y.C., Lu. 2007. A mechanistic study on lead-induced passivity-degradation of nickel-based alloy. J Electrochem Soc. 154(8).
    [6] B.T., Lu, J.L., Luo, A., Palani, Y.C., Lu. 2009. Condition for lead-induced corrosion of Alloy 690 in an alkaline steam generator crevice solution. Corrosion. 65(9):601-610.
    [7] J., Lumsden, A., McIlree. 2008. Electrochemical evaluation of lead species under pressurized water reactor secondary chemistry conditions. EPRI, Palo Alto, CA. Report No. 1016557.
    [8] K., Fruzzetti, Workshop of Effects of Pb and S on the Performance of Secondary Side Tubing of Steam Generators in PWRs, ANL, IL, May 24–27 (2005).
    [9] E.J., Jankowsky, “Notched C-Ring Test,” Hydrogen Embrittlement Testing, ASTM STP 5/+3, American Society for Testing and Materials, 1974, pp. 51-57.
    [10] Standard Practice for Making and Using C-Ring Stress-Corrosion Test Specimens, ASTM G38 – 01(2013).
    [11] P.L., Andresen, ‘Emerging issues and fundamental processes in environmental cracking in hot water’, Corrosion, 2008, 64, (5), 439–464.
    [12] R.W., Staehle, Historical views on stress corrosion cracking of nickel-based alloys. Stress Corrosion Cracking of Nickel Based Alloys in Water-cooled Nuclear Reactors, Elsevier, 2016, pp. 3–131.
    [13] A., Turnbull. Stress Corrosion Cracking: Mechanisms. In: Cottis RA, editor. Encyclopedia of Materials: Science and Technology. Elsevier; 2001. p. 8886-8892.
    [14] R.B., Rebak, Z., Szklarska-Smialowska. The mechanism of stress corrosion cracking of alloy 600 in high temperature water, Corros. Sci. 38 (1996) 971–988.
    [15] D., Féron, C., Guerre, E., Herms, P., Laghoutaris. 9 - Stress corrosion cracking of Alloy 600: overviews and experimental techniques. Stress Corrosion Cracking of Nickel Based Alloys in Water-cooled Nuclear Reactors, Woodhead Publishing, 2016, pp. 325–353.
    [16] R.N., Parkins. (1972). Stress Corrosion Spectrum. British Corrosion Journal, 7(1), 15–28.
    [17] M.O., Speidel. 1971. Current understanding of stress corrosion crack growth in aluminum alloys. In: The Theory of Stress Corrosion Cracking (ed. J.C. Scully), pp. 289–344. NATO, Brussels.
    [18] W., Dietzel, A., Turnbull. Stress Corrosion Cracking. In: Cottis RA, Graham MJ, Lindsay R, Lyon SB, Richardson JA, Scantlebury JD, Stott FH, editors. Shreir's Corrosion. Vol. 3. 4th ed. Oxford: Elsevier; 2010. p. 44-73.
    [19] H., Uhlig. (1969) in Proc. Conf. fundamental aspects of stress corrosion cracking, NACE, Houston: Staehle RW, Forty AJ, Van Ruoyan D (eds).
    [20] C.A., Loto. Stress corrosion cracking: characteristics, mechanisms and experimental study, Int. J. Adv. Manuf. Technol. 93 (9–12) (Dec. 2017) 3567–3582.
    [21] R.N., Parkins. (1971) In: Scully JC (ed) The theory of stress corrosion cracking in alloys. NATO, Brussels, p 167.
    [22] M.B., Djukic, V., Sijacki Zeravcic, G.M., Bakic, A., Sedmak, B., Rajicic. 2015. Hydrogen damage of steels: A case study and hydrogen embrittlement model. Eng Fail Anal. 58:485-498.
    [23] X., Li, X., Ma, J., Zhang. et al. Review of Hydrogen Embrittlement in Metals: Hydrogen Diffusion, Hydrogen Characterization, Hydrogen Embrittlement Mechanism and Prevention. Acta Metall. Sin. (Engl. Lett.) 33, 759–773 (2020).
    [24] S.P., Lynch. "Progress Towards Understanding Mechanisms Of Hydrogen Embrittlement And Stress Corrosion Cracking." Paper presented at the CORROSION 2007, Nashville, Tennessee, March 2007.
    [25] J., Gao, D.J., Quesnel, "The Effect of Sensitization on Stress Corrosion Cracking of AA5083," in NACE International CORROSION 2010, San Antonio, TX, 2010.
    [26] Nuclear Regulatory Commission. Pressurized Water Reactor (PWR) Animated Diagram [Internet]. Washington, D.C.: U.S. Nuclear Regulatory Commission.
    [27] K., Arioka, T., Yamada, T., Miyamoto, T., Terachi. 2015. SCC initiation of CW Alloy TT690 and Alloy 600 in PWR water. Proc 17th Int Conf Environ Degrad Mater Nucl Power Syst Water React. Ottawa, Ontario, Canada.
    [28] Electric Power Research Institute (EPRI). Pressurized Water Reactor Primary Water Chemistry Guidelines: Volume 2, Revision 6. EPRI, Palo Alto, CA; 2007. Report No.: 1014986.
    [29] Electric Power Research Institute (EPRI). Pressurized Water Reactor Secondary Water Chemistry Guidelines: Volume 1, Revision 7. EPRI, Palo Alto, CA; 2008. Report No.: 1025093.
    [30] Z., Szklarska-Smialowska, R.B., Rebak. Stress corrosion cracking of alloy 600 in high temperature aqueous solutions: influencing factors, mechanisms and models. United States.
    [31] Y., Yamamoto, M., Ozawa, K., Nakata, T., Tsuruta, M., Sato, T., Okabe. (2005). Evaluation of crack growth rate for alloy 600TT SG tubing in primary and faulted secondary water environments. In Proc. of the 12th Int. Conf. on Environmental Degradation of Materials in Nuclear Power System-Water Reactors-TMS (pp. 1243-1252).
    [32] Y., Yamamoto, M., Ozawa, K., Nakata, T., Tsuruta, M., Sato, T., Okabe. (2005). Evaluation of crack growth rate for alloy 600TT SG tubing in primary and faulted secondary water environments. In Proc. of the 12th Int. Conf. on Environmental Degradation of Materials in Nuclear Power System-Water Reactors-TMS (pp. 1243-1252).
    [33] J., Bang, G.H., Choi, D.W., Jerng, S.W., Bae, S., Jang, S.J., Ha. 2022. Analysis of steam generator tube rupture accidents for the development of mitigation strategies. Nucl Eng Technol. 54:152-161.
    [34] P.E., MacDonald, V.N., Shah, L.W., Ward, P.G., Ellison. “Steam generator tube failures”, Nuclear Regulatory Commission, Washington, DC (United States). Div. of Safety Programs; Idaho National Engineering Lab., Idaho Falls, ID (United States), pp. 305, 1996.
    [35] S., Zinkle, G., Was. Materials challenges in nuclear energy. Acta Mater 2013;61(3): 735–58.
    [36] J., Lumsden et al., “FACTORS AFFECTING PBSCC IN ALLOY 600 AND ALLOY 690 STEAM GENERATOR TUBING”, The 13th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactor, Whistler, British Columbia, August 19 - 23, 2007.
    [37] D.J., Kim, H.P., Kim, S.S., Hwang, J.S., Kim, J., Park. (2010). Stress Corrosion Cracking of Alloy 600 in an Aqueous Solution Containing Lead Oxide. Metallurgical and Materials Transactions A, 16, 259.
    [38] B., Peng, B.T., Lu, J.L., Luo, Y.C., Lu, H.Y., Ma. “Investigation of passive films on nickel Alloy 690 in lead-containing environments”, Journal of Nuclear Materials 378 (2008) 333–340.
    [39] G.B., Mazzei, M.G., Burke, D.A., Horner, et al., Lead-induced stress corrosion cracking (PbSCC) initiation in alloy 690TT in caustic environment [J], Corros. Sci. (2022) 206.
    [40] G.B., Mazzei et al., "Effect of stress and surface finish on Pb-caustic SCC of alloy 690TT," Corrosion Science, VOL. 187, 109462, 2021.
    [41] Z., Zhang, J., Wang, E.H., Han, W., Ke. 2012. Effects of surface state and applied stress on stress corrosion cracking of Alloy 690TT in lead-containing caustic solution. J Mater Sci Technol. 28(9):785-792.
    [42] D.J., Kim et al., "Oxide properties and stress corrosion cracking behaviour for Alloy 600 in leaded caustic solutions at high temperature," Corrosion Science, VOL. 53, NO. 4, 1247-1253, 2011.
    [43] Dong-Jin, Kim et al., “ODSCC Assessment of Alloy 690 under complex environments of seconding side”, International Cooperative Group on Environmentally- Assisted Cracking (ICG-EAC) Annual Meeting, Chester, UK, May 08-12, 2017.
    [44] S.S., Hwang, H.P., Kim, Y.S., Lim, J.S., Kim, L., Thomas. 2007. Transgranular SCC mechanism of thermally treated alloy 600 in alkaline water containing lead. Corros Sci. 49:3797-3811.
    [45] D.H., Hur, W.I., Choi, G.D., Song, S.H., Jeon, S., Lim. 2018. Mechanistic insights into lead-accelerated stress corrosion cracking of Alloy 600. Corros Sci. 145:109-118.
    [46] Z., Zhang, J., Wang, E.H., Han, W., Ke. 2012. Effects of surface state and applied stress on stress corrosion cracking of Alloy 690TT in lead-containing caustic solution. J Mater Sci Technol. 28(9):785-792.
    [47] J., Tan, X., Wu, E.H., Han, W., Ke, X., Liu, F., Meng, X., Xu. 2014. Role of TiN inclusion on corrosion fatigue behavior of Alloy 690 steam generator tubes in borated and lithiated high temperature water. Corrosion Science. 88:349-359.
    [48] F.G., Meng, E.H., Han, X., Wu, J., Tan, W., Ke. 2010. The role of TiN inclusions in stress corrosion crack initiation for Alloy 690TT in high-temperature and high-pressure water. Corrosion Science. 52(3):927-932.
    [49] R.S., Dutta, R., Tewari. (1999). Microstructural and corrosion aspects of alloy 690. British Corrosion Journal, 34(3), 201–205.
    [50] T., Lee, B., Delley, C., Stampfl, A., Soon. (2012). Environment-dependent nanomorphology of TiN: The influence of surface vacancies. Nanoscale, 4(16), 5183-5188.
    [51] J.H., Kim, I.S., Hwang. 2005. Development of an in situ Raman spectroscopic system for surface oxide films on metals and alloys in high temperature water. Nuclear Engineering and Design. 235(8):1029-1040.
    [52] J., Kim, K.J., Choi, C.B., Bahn, J.H., Kim. 2014. In situ Raman spectroscopic analysis of surface oxide films on Ni-base alloy/low alloy steel dissimilar metal weld interfaces in high-temperature water. J Nucl Mater. 449:181-187.
    [53] J.E., Maslar, W.S., Hurst, W.J., Bowers Jr, J.H., Hendricks, M.I., Aquino. 2002. In situ Raman spectroscopic investigation of nickel hydrothermal corrosion. Corrosion. 58(3):225-231.
    [54] K., Ishida, Y., Wada, M., Tachibana, M., Aizawa, M., Fuse, E., Kadoi, H., Takiguchi. “Hydrazine and hydrogen co-injection to mitigate stress corrosion cracking of structural materials in boiling water reactors (V) effects of hydrazine and dissolved oxygen on flow accelerated corrosion of carbon steel”, Journal of Nuclear Science and Technology, vol. 44, pp. 222–232, 2007.
    [55] T., Moss, G.S., Was. “Factor of Improvement In Resistance Of Stress Corrosion Crack Initiation Of Alloy 690 Over Alloy 600”, in: The 17th International Conference on Environmental Degradation of Materials in Nuclear Power, Ottawa, ON, Canada, 2015.
    [56] A.T., Yokobori, M., Shibata, M., Tabuchi, A., Fuji. (1998). Comparative study of the estimation of creep crack growth behaviour of TiAI by using a precrack and a notch CT specimens. Materials at High Temperatures, 15(2), 57–62.
    [57] M., Nowak-Coventry, H., Pisarski, P., Moore. 2015. The effect of fatigue pre-cracking forces on fracture toughness. Fatigue Fract Eng Mater Struct. 39:135-148.
    [58] ASTM International. Standard Practice for Making and Using C-Ring Stress-Corrosion Test Specimens. ASTM G38 − 01 (Reapproved 2021). West Conshohocken (PA): ASTM International; 2021.
    [59] E.J., Jankowsky. Notched C-Ring Test. In: Hydrogen Embrittlement Testing, ASTM STP 543. American Society for Testing and Materials; 1974. p. 51-57.
    [60] J.I., Goldstein, D.E., Newbury, P., Echlin, D.C., Joy, C.E., Lyman, E., Lifshin, L., Sawyer, J.R., Michael. Scanning Electron Microscopy and X-Ray Microanalysis. 3rd ed. New York: Springer Science+Business Media; 2003.
    [61] V.D., Hodoroaba. Energy-dispersive X-ray spectroscopy (EDS). In: Hodoroaba VD, editor. Characterization of Nanoparticles. Amsterdam: Elsevier; 2020. p. 397-416.
    [62] D.A., Wollman, K.D., Irwin, G.C., Hilton, L.L., Dulcie, D.E., Newbury, J.M., Martinis. High-resolution, energy-dispersive microcalorimeter spectrometer for X-ray microanalysis. J Microsc. 1997 Dec;188(3):196-223.
    [63] P., Gillet. 1996. Raman spectroscopy at high pressure and high temperature: Phase transitions and thermodynamic properties of minerals. Phys Chem Minerals. 23:263-275.
    [64] R., Petry, M., Schmitt, J., Popp. Raman spectroscopy--a prospective tool in the life sciences. Chemphyschem. 2003 Jan 13;4(1):14-30.
    [65] P., Rostron, S., Gaber, D., Gaber. 2016. Raman spectroscopy, a review. Int J Eng Technol Res. 6(1):50-60.

    QR CODE