簡易檢索 / 詳目顯示

研究生: 陳燦麒
Tsan-chyi Chen
論文名稱: 在氯化鎘處理下,區分人類非小型肺癌細胞(H460)的熱休克蛋白質七十家族之成員基因表現的新方法
Differential Expressions of HSP70 Family Members in Human Non-Small Cell Lung Cancer H460 Cells Treated with Cadmium Chloride by a Novel Method
指導教授: 黎耀基
Yiu-Kay Lai
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生命科學系
Department of Life Sciences
論文出版年: 2001
畢業學年度: 89
語文別: 中文
論文頁數: 56
中文關鍵詞: 擴大子氯化鎘葡萄糖調控蛋白質熱休克相似蛋白質熱休克蛋白質引子反轉錄脢-聚合脢鏈反應
外文關鍵詞: amplicon, cadmium chloride (CdCl2), glucose regulated protein (GRP), heat shock cognate (HSC), heat shock protein (HSP), primer, RT-PCR
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 熱休克蛋白質 (Heat-Shock Proteins; HSPs) 或保護子 (Chaperones) 具有保護並穩定在細胞內正常蛋白質的摺疊作用和基本功能。而保護子通常是由很多序列相似性高的成員所組成的大蛋白質家族;但是,成員之間在細胞內的分佈和在基因調控上可能不盡相同。為了區分出保護子的家族各成員蛋白質,我們利用半定量分析的反轉錄脢-聚合脢鏈反應 (RT-PCR) 方法,去分析出人類非小型性肺癌細胞株 (H460 cells) 處在氯化鎘的逆境環境下,所表現出不同熱休克蛋白質七十家族成員基因 (hsp70-1, hsp70-2, hsp70-hom, hsp70-3, grp78, hsp70B, and hsp70B’) 的表現情形,利用一組共同的引子 (primers) 去擴大後,再以不同的專一限制內切脢去區分。已知當細胞受到重金屬鎘的刺激下,細胞的生理反應和基因的表現會因不同濃度和處理時間的長短而有所差異。同理,在我們研究系統中,細胞處於低濃度 (5 uM) 和高濃度 (40 uM to 60 uM) 的鎘刺激下,產生的保護子所表現出的變化情形亦有所不同。我們以硫-35標定分析受刺激的細胞內所新合成的熱休克蛋白質的變化情形,以西方點墨法 (Western blotting) 分析受刺激的細胞內所存在的總熱休克蛋白質七十家族成員的變化情形;再以RT-PCR去分析細胞受到鎘刺激下,個別保護子成員的基因表現。從我們的研究結果指出,這種新的方法確實可以進一步的分析,細胞受到逆境的刺激下,在熱休克蛋白質七十家族成員間,在基因層次的不同變化情形。在此,細胞受到氯化鎘的刺激之下,已知主要的家族成員為hsp70-1、hsp70-2和grp78。除了這幾個成員之外,預期的結果應該可以再分析到另外四個成員(hsp70-hom、hsp70-3、hsp70B和hsp70B’),而在此狀況下,確實沒有參與在氯化鎘刺激的反應中。


    The heat-shock proteins (HSPs) or chaperones can protect and stabilize the folding and functions of normal proteins in cells. Chaperones are generally composed of large, evolutionarily conserved families within which the members are highly related, yet might differ in subcellular localization or gene regulation. We used semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) to analyze the expression profile of HSP70 isoforms in human non-small cell lung cancer H460 cells under CdCl2 stress. The expressions of hsp70-1, hsp70-2, hsp70-hom, hsp70-3, grp78, hsp70B, and hsp70B’ were monitored by amplifying from a conserved, common primer set and then differentiated by isoform-specific restriction enzymes. It is known that CdCl2 could elicit different cellular responses and gene expressions in a concentration-dependent and treatment time-dependent manner. Consistent with which, in our system, the expression level or pattern of chaperones varied low concentration (5 uM) and high concentration (40 uM to 60 uM) of CdCl2. We compared the changes of the newly synthesized chaperones by metabolic l ling with [35S]methionine and of the total chaperones by Western blotting analysis in CdCl2 treatment. We further analyzed changes of gene expression of individual isoforms by RT-PCR. From our study, this novel method can be performed to differentiate the members of HSP70 family under stress. Here, it has been found that the main members of HSP70 family in CdCl2-treated cells include hsp70-1, hsp70-2, and grp78. Furthermore, other four members of HSP70 family (hsp70-hom, hsp70-3, hsp70B, and hsp70B’) can be analyzed by this novel method. These four members don’t take part in stress conditions with CdCl2-treated.
    二、英文附錄

    1. ABSTRACT....................................2

    2. INTRODUCTION................................3

    3. EXPERIMENTAL PROCEDURES.....................7

    4. RESULTS....................................11

    5. DISCUSSION.................................18

    6. REFERENCES.................................23

    7. FIGURE LEGENDS.............................30

    8. FIGURES....................................34

    9. TABLES.....................................45

    Abe, T., Yamamura, K., Gotoh, S., Kashimura, M., and Higashi, K. (1998) Concentration-dependent differential effects of N-acetyl-L-cysteine on the expression of HSP70 and metallothionein genes induced by cadmium in human amniotic cells. Biochim. Biophys. Acta 1380(1), 123-132
    Abshire, M. K., Buzard, G. S., Shiraishi, N., and Waalkes, M. P. (1996) Induction of c-myc and c-jun proto-oncogene expression in rat L6 myoblasts by cadmium is inhibited by zinc preinduction of the metallothionein gene. J. Toxicol. Environ. Health 48, 359-377
    Almazan, G., Liu, H. N., Khorchid, A., Sundararajan, S., Martinez-Bermudez, A. K., and Chemtob, S. (2000) Exposure of developing oligodendrocytes to cadmium causes HSP72 induction, free radical generation, reduction in glutathione levels, and cell death. Free Radic. Biol. Med. 29(9), 858-869
    Bannai, S., Sato, H., and Taketani, S. (1991) Enhancement of glutathione levels in mouse peritoneal macrophage by sodium arsenite, cadmium chloride and glucose/glucose oxidase. Biochim. Biophys. Acta 1092, 175-179
    Beyersmann, D., and Hechtenberg, S. (1997) Cadmium, gene regulation and cellular signaling in mammalian cell. Toxicol. Appl. Pharmacol. 144, 247-261
    Bhattacharyya, T., Karnezis, A. N., Murphy, S. P., Hoang, T., Freeman, B. C., Phillips, B., and Morimoto, R. I. (1995) Cloning and subcellular localization of human mitochondrial hsp70. J. Biol. Chem. 270, 1705-1710
    Bonnycastle, L. L., Yu, C. E., Hunt, C. R., Trask, B. J., Clancy, K. P., Weber, J. L., Patterson, D., and Schellenberg, G. D. (1994) Cloning, sequencing, and mapping of the human chromosome 14 heat shock protein gene (HSPA2). Genomics 23, 85-93
    Chin, T. A., and Templeton, D. M. (1993) Protective evaluations of glutathione and metallothionein. Toxicology 77, 145-156
    Cohen, M., Lotta, L., Coogan, T., and Costa, M. (1991) Mechanisms of metal carcinogenesis: The reactions of Metals with nucleic acids. In biological Effects of Heavy Metals (E. C. Foulkes, Ed.), pp. 19-75. CRC, Boca Raton.
    Croute, F., Beau, B., Arrabit, C., Gaubin, Y., Delmas, F., Murat, J. C., and Soleilhavoup, J. P. (2000) Pattern of stress protein expression in human lung cell-line A549 after short- or long-term exposure to cadmium. Environ. Health. Perspect. 108(1), 55-60
    Dilworth, C., Hamilton, G. A., George, E., and Timbrell, J. A. (2000) The use of liver spheroids as an in vitro model for studying induction of the stress response as a marker of chemical toxicity. Toxicol. In Vitro 14(2), 169-176
    Domanico, S. Z., DeNagel, D. C., Dahlseid, J. N., Green, J. M., and Pierce, S. K. (1993) Cloning of the gene encoding peptide-binding protein 74 shows that it is a new member of the heat shock protein 70 family. Mol. Cell. Biol. 13, 3598-3610
    Dworniczak, B., and Mirault, M. E. (1987) Structure and expression of a human gene coding for a 71 kd heat shock ‘cognate’ protein. Nucleic Acids Res. 15, 5181-5197
    Epner, D., and Herschman, H. R. (1991) Heavy metals induce expression of the TPA-inducible sequence (TIS) genes. J. Cell. Physiol. 148, 68-74
    Fandrey, J., and Bunn, H. F. (1993) In vivo and in vitro regulation of erythropoietin mRNA: Measurement by competitive polymerase chain reaction. Blood 81, 617-623
    Ferrre, F. (1992) Quantitative or semi quantitative PCR: Reality versusmyth. PCR Meth. Applic. 2, 1-9
    Fink, A. L. (1999) Chaperone-Mediated Protein Folding. Physiological reviews 79, 425-449; Review
    Gaubin, Y., Vaissade, F., Croute, F., Beau, B., Soleilhavoup, J., and Murat, J. (2000) Implication of free radicals and glutathione in the mechanism of cadmium-induced expression of stress proteins in the A549 human lung cell-line. Biochim. Biophys. Acta 1495(1), 4-13
    Georgopoulos, C., and Welch, W. J. (1993) Role of the major heat shock proteins as molecular chaperones. Annu. Rev. Cell Biol. 9, 601-634
    Gilliland, G., Perrin, S., Blanchard, K., and Bunn, H. F. (1990) Analysis of cytokine mRNA and DNA: Detection and quantitation by competitive polymerase chain reacton. Proc. Nat. Acad. Sci. USA 87, 2725-2729
    Gunther, E., and Walter, L. (1994) Genetic aspects of the hsp70 multigene family in vertebrates. Experientia 50, 987-1001
    Hechtenberg, S., Schafer, T., Benters, J., and Beyersmann, D. (1996) Effects of Cadmium on cellular calcium and proto-oncogene expression. Ann. Clin. Lab. Sci. 26, 512-521
    Hung, J. J., Cheng, T. J., Chang, M. D., Chen, K. D., Huang, H. L., and Lai, Y. K. (1998) Involvement of heat shock elements and basal transcription elements in the differential induction of the 70-kDa heat shock protein and its cognate by cadmium chloride in 9L rat brain tumor cells. J. Cell. Biochem. 71(1), 21-35
    Hunt, C. and Morimoto, R. I. (1985) Conserved features of eukaryotic hsp70 genes revealed by comparison with the nucleotide sequence of human hsp70. Proc. Natl. Acad. Sci. U.S.A. 82, 6455-6459
    Ito, Y., Ando, A., Ando, H., Ando, J., Saijoh, Y., Inoko, H., and Fujimoto, H. (1998) Genomic structure of the spermatid-specific hsp70 homolog gene located in the class III region of the major histocompatibility complex of mouse and man. J. Biochem. 124, 347-353
    Jensen, L. E., and Whitehead, A. S. (1998) Competitive reverse transcription polymerase chain reaction for quantifying pre-mRNA and mRNA of major acute phase proteins. Immunol. Methods 215, 45-58
    Kaul, S. C., Wadhwa, R., Matsuda, Y., Hensler, P. J., Pereira-Smith, O. M., Komatsu, Y., and Mitsui, Y. (1995) Mouse and human chromosomal assignments of mortalin, a novel member of the murine hsp70 family of proteins. FEBS Lett. 361, 269-272
    Kiang, J. G., and Tsokos, G. C. (1998) Heat Shock Protein 70 kDa: Molecular Biology, Biochemistry, and Physiology. Pharmacol. Ther. 80, 183-201; Review
    Koropatnick, J., and Leibbrandt, M. E. I. (1995) Effects of metals on gene expression. In Toxicology of Metals (Royer, R. R., and Cherian, M. G., Eds.), pp. 93-120. Springer, Berlin.
    Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685
    Lai, Y. K., Shen, C. H., Cheng, T. J., Hou, M. C., and Lee, W. C. (1993) Enhanced Phosphorylation of a 65 kDa Protein is Associated with Induction of Stress Protein in 9L Rat Brain Tumor Cells. J. Cell Biochem. 51, 369-379
    Lee, W. C., Lin, K. Y., Chen, C. M., Chen, Z. T., Liu, H. J., and Lai, Y. K. (1991) Induction of heat-shock response and alterations of protein phosphorylation by a novel topoisomerase II inhibitor, with angulatin A, in 9L rat brain tumor cells. J. Cell Physiol. 149. 66-76
    Leung, T. K., Hall, C., Rgjendran, M., Spurr, N. K., and Lim, L. (1992) The human heat-shock genes HSPA6 and HSPA7 are both expressed and localize to chromosome 1. Genomics 12, 74-79
    Leung, T. K., Rajendran, M. Y., Monfries, C., Hall, C., and Lim, L. (1990) The human heat-shock protein family. Expression of a novel heat-inducible HSP70 (HSP70B’) and isolation of its cDNA and genomic DNA. Biochem. J. 267, 125-132
    Li, W., Zhao, Y., and Chou, I. –N. (1993) Alterations in cytoskeletal protein sulfhydryls and cellular glutathione in cultured cells exposed to cadmium and nickel ions. Toxicology 77, 65-79
    Lindguist, S., and Craig, E. (1988) The heat-shock proteins. Annu. Rev. Genets 22, 631-677
    Marth, E., Barth, S., and Jelovcan, S. (2000) Influence of cadmium on the immune system. Description of stimulating reactions. Cent. Eur. J. Public. Health. 8(1), 40-44
    Matsuoka, M., and Call, K. M. (1995) Cadmium-induced expression of immediate early genes in LLC-PK1 cells. Kidney Int. 48, 383-389
    Mayer, M. P., and Bukau, B. (1998) Hsp70 Chaperone Systems: Diversity of Cellular Functions and Mechanism of Action. Biol. Chem. 379,261-268; Review
    Milner, C. M., and Campbell, R. D. (1990) Structure and expression of the three MHC-linked HSP70 genes. Immunogenetics 32, 242-251
    Nover, L. (1991) Heat Shock Response. CRC Press, Boca Raton.
    O,Connell, J., Goode, T., and Shanahan, F. (1998) Quantitative measurement of mRNA expression by competitive RT-PCR. Methods Mol. Biol. 92, 183-193
    Ovelgonne, J. H., Souren, J. E., Wiegant, F. A., and Van Wijk R. (1995) Relationship between cadmium-induced expression of heat shock genes, inhibition of protein synthesis and cell death. Toxicology 99, 19-30
    Rassow, J., Woo, W., and Pfanner, N. (1995) Molecular chaperones and intracellular protein translocation. Rev. Physiol. Biochem. Pharmacol. 126, 199-264
    Rensing, S. A., and Maier, U. G. (1994) Phylogenetic analysis of the stress-70 protein family. J. Mol. Evol. 39, 80-86
    Roux, A. F., Nguyen, V. T., Squire, J. A., and Cox, D. W. (1994) A heat shock gene at 14q22: mapping and expression. Hum. Mol. Genet. 3, 1819-1822
    Sargent, C. A., Dunham, I., Trowsdale, J., and Campbell, R. D. (1989) Human major histocompatibility complex contains genes for the major heat shock protein HSP70. Proc. Natl. Acad. Sci. U.S.A. 86, 1968-1972
    Schwaller, J., Pabst, T., Bickel, M., Borish, B., Fey, M. F., and Tobler, A. (1997) Comparative detection and quantitation of human CDK inhibitor mRNA expression of p15INK4B, p16INK4A, p16beta, p18INK4C, p19INK4D, p21WAF1, p27KIP1 and p57KIP2 by RT-PCR using a polycompetitive internal standard. Br. J. Haematol. 99, 896-900
    Shimizu, S., Nomura, K., Ujihara, M., and Demura, H. (1999) An Additional Exon of Stress-Inducible Heat Shock Protein 70 Gene (HSP70-1). Biochem. Biophys. Res. Commun. 257, 193-198
    Siebert, P. D., and Larrick, J. W. (1992) Competitive PCR. Nature 18, 557-558
    Somji, S., Todd, J. H., Sens, M. A., Garrett, S. H., and Sens, D. A. (2000) Expression of the constitutive and inducible forms of heat shock protein 70 in human proximal tubule cells exposed to heat, sodium arsenite, and CdCl(2). Environ. Health. Perspect. 107(11), 887-893
    Tavaria, M., Gabriele, T., Anderson, R. L., Mirault, M. E., Baker, E., Sutherland, G., and Kola, I. (1995) Localization of the gene encoding the human heat shock cognate protein, HSP73, to chromosome 11. Genomics 29, 266-268
    Tavaria, M., Gabriele, T., Kola, I., and Anderson, R. L. (1996) A hitchhiker’s guide to the human Hsp70 family. Cell Stress & Chaperones 1, 23-28; Review
    Ting, J., and Lee, A. S. (1988) Human gene encoding the 78,000-dalton glucose-regulated protein and its pseudogene: structure, conservation, and regulation. DNA 7(4), 275-286
    Vilaboa, N. E., Calle, C., Perez, C., de Blas, E., Garcia-Bermejo, L., and Aller, P. (1995) cAMP increasing agents prevent the stimulation of heat-shock protein 70 (HSP70) gene expression by cadmium chloride in human myeloid cell lines. J. Cell Sci. 108( Pt 8), 2877-2883
    Wang, S. M., Khandekar, J. D., Kaul, K. L., Winchester, D. J., and Morimoto, R. I. (1999) A method for the quantitative analysis of human heat shock gene expression using a multiplex RT-PCR assay. Cell Stress Chaperones 4(3), 153-161.
    Welch, W. J. (1991) The role of heat-shock protein as molecular chaperones. Curr. Opin. Cell Biol. 3, 1033-1038
    Xie, H., Hu, Z., Chyna, B., Horrigan, S. K., and Westbrook, C. A. (2000) Human mortalin (HSPA9): a candidate for the myeloid leukemia tumor suppressor gene on 5q31. Leukemia. 14(12), 2128-2134
    Zglinichi, T., von Edwall, C., Ostilund, E., Lind, B., Nordberg, M., Ringertz, N. R., and Wroblewske, J. (1992) Very low cadmium concentrations stimulate DNA synthesis and cell growth. J. Cell Sci. 103, 1073-1081

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE