簡易檢索 / 詳目顯示

研究生: 林家妤
Lin, Chia-Yu
論文名稱: 石墨烯電容式觸控面板
Graphene Capacitance Touch Panel
指導教授: 邱博文
Chiu, Po-Wen
口試委員: 邱博文教授
徐永珍教授
戴念華教授
李奎毅教授
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2014
畢業學年度: 103
語文別: 中文
論文頁數: 105
中文關鍵詞: 石墨烯透明導電膜觸控技術觸控面板
外文關鍵詞: Graphene, Transparent conductive films, Touch Technology, Touch Panel
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自2004年二維材料單原子層石墨烯首度利用機械玻璃法成功地從高定向熱裂解石墨(HOPG)上穩定的被分離出來,除了基礎石墨烯的物理特性外,石墨烯還兼具導電、高光學穿透率以及良好的機械特性,使得石墨烯在觸控技術領域上的應用備受矚目。相較於過去人與電腦或機器之溝通介面主要以鍵盤或滑鼠為主,觸控螢幕技術可使用戶進行快速直觀的功能選擇,令全球消費者帶來全新的使用體驗,使得現在是人手一觸控介面,消費者的需求亦越趨多元化,因此如何將石墨烯應用於觸控面板則成為眾多研究團隊爭相投入之領域,並且能最快驗證石墨烯未來在產業的發展潛能。

    本研究首先從觸控技術的演進歷程與碳材料的應用發展,說明石墨烯的研究發現及應用領域,同時完整介紹石墨烯的基本物理特性、製備和參雜,並透過觸控面板製程中常使用的材料、種類和檢測技術原理等作系統性的說明,接著以系統性的規劃研究實驗架構和製成流程,進行一系列的實驗規劃與驗證,最終並成功研製出符合石墨烯觸控面板的整套製作流程,並成功製作出兩種觸控面板結構,並實現了多點感應的石墨烯電容式觸控面板,希以此作為未來石墨烯在觸控產業發展的基石。本研究對於運用石墨烯製作可撓式觸控面板的實務應用,在製程規劃與實驗模式亦奠定了基礎,同時藉由實驗上的製程關鍵技術與分析方法之運用,可提供觸控面板產業未來多元性發展的指標依循。


    Since two dimensional material of single atomic carbon layer – graphene was isolated successfully from HOPG using mechanical exfoliation methods in 2004, many researchers have showed their interests to the graphene’s fantastic and excellent properties. In addition to physical properties of the graphene, the graphene also attracts more interests in touch technology due to its high transmittance, stiffness and conductivity properties. Transparent conductive film is a kind of substance which can be combined with the grapheme quickly in touch industry.

    In the past, the communication interface between men and computers is keyboard or mouse; however, touch technology enables users to perform fast, intuitive function selection today and brings new experiences to users. Nowadays touch technology is becoming increasingly popular and no one can live without it. So how to use the graphene in this field becomes an important issue.

    In this study, we changed the metal bridge structure, the traditional process of making touch panels, and use bottom bridge structure to make the graphene touch panel. Finally, we developed the graphene touch panel manufacturing process successfully, and achieved a multi-point sensing graphene capacitive touch panel inclusive of two structures — bottom bridge structure and double side structure. It can be the foundation of flexible touch panel practical applications and provides diverse development of indicators to followers in the display industry in the future.

    論文摘要................................................ I 目錄................................................... VIII 第一章序論................................................1 1.1 觸控技術的演進. . . . . . . . . . . . . . . . . . . . 1 1.2 碳材料的發展與應用. . . . . . . . . . . . . . . . . . .3 1.3 研究動機與目的. . . . . . . . . . . . . . . . . . . . 5 第二章石墨烯..............................................7 2.1 石墨烯的基本物理特性. . . . . . . . . . . . . . . . . 7 2.1.1 石墨烯晶體結構. . . . . . . . . . . . . . . . . . .7 2.1.2 石墨烯能帶結構. . . . . . . . . . . . . . . . . . . 9 2.2 石墨烯的光學與機械特性. . . . . . . . . . . . . . . . 10 2.3 石墨烯的製備. . . . . . . . . . . . . . . . . . . . 15 2.4 石墨烯的摻雜. . . . . . . . . . . . . . . . . . . ...19 第三章透明導電膜......................................... 25 3.1 透明導電膜介紹. . . . . . . . . . . . . .............25 3.1.1 透明導電膜簡介. . . . . . . . . . . . . . . . . ...25 3.1.2 透明導電膜材料. . . . . . . . . . . . . . . . . ...26 3.2 觸控式螢幕種類. . . . . . . . . . . . . . . . . . . .29 3.2.1 電阻式. . . . . . . . . . . . . . . . . . ........30 3.2.2 電容式. . . . . . . . . . . . . . . . ............32 3.2.3 波動式. . . . . . . . . . . . . . . . . . . . . . 37 3.3 電容式觸控技術檢測. . . . . . . . . . . . . . . . . . 39 第四章元件製程.......................................... 45 4.1 以化學氣相沉積法備製石墨烯. . . . . . . . . . . . . . 45 4.1.1 化學氣相沉積系統. . . . . . . . . . . . . . . . . .45 4.1.2 大面積石墨烯成長. . . . . . . . . . . . . . . . . 46 4.1.3 大面積石墨烯轉移. . . . . . . . . . . . . . . . . 51 4.2 觸控元件設計與製程. . . . . . . . . . . . . . . . . 54 4.2.1 觸控元件設計. . . . . . . . . . . . . . . . . . . 54 4.2.2 觸控元件製程. . . . . . . . . . . . . . . . . . . 57 4.3 以石墨烯製作軟性觸控面板. . . . . . . . . . . . . . . 63 4.4 實驗儀器介紹. . . . . . . . . . . . . . . . . . . . 68 4.4.1 光學微影. . . . . . . . . . . . . . . . . . . . .68 4.4.2 熱金屬蒸鍍. . . . . . . . . . . . . . . . . . . .69 4.4.3 反應式離子蝕刻. . . . . . . . . . . . . . . . . . 70 4.4.4 電漿增強型化學氣相沉積. . . . . . . . . . . . . . 71 第五章元件量測與分析................................... 73 5.1 量測方法與系統. . . . . . . . . . . . . . . . .... 73 5.2 電極線阻值檢測與絕緣品質測試. . . . . . . . . . . . 74 5.2.1 硬基板之量測結果. . . . . . . . . . . . . . . . 74 5.2.2 絕緣品質測試. . . . . . . . . . . . . . . . . . 77 5.2.3 軟基板之量測結果. . . . . . . . . . . . . . . .. 81 5.3 觸控IC . . . . . . . . . . . . . . . . . . . . . 83 5.3.1 觸控IC 結構. . . . . . . . . . . . . . . . . . 83 5.3.2 觸控IC 連接. . . . . . . . . . . . . . . . . . 84 5.4 觸控元件測試. . . . . . . . . . . . . . . . . . . 86 5.4.1 觸控軟體介面. . . . . . . . . . . . . . . . . . 86 5.4.2 硬基板元件測試. . . . . . . . . . . . . . . . . 88 5.4.3 軟基板元件測試. . . . . . . . . . . . . . . . . 91 5.5 元件量測結果與分析. . . . . . . . . . . . . . . . 94 第六章結論與未來展望................................... 95

    [1] “Samuel hurst,” www.zol.com.cn.
    [2] “Npd displaysearch,” NPD DisplaySearch, http://www.eettaiwan.com/ART-8800688044-
    480702-NT-9655c4a1.HTM.
    [3] H. W. Kroto, J. R. Heath, S. C. Obrien, R. F. Curl, and R. E. Smalley, “C-60 - buckminsterfullerene,”
    Nature, vol. 318, pp. 162–163, 1985.
    [4] S. Iijima, “Helical microtubules of graphitic carbon,” Nature, vol. 354, pp. 56–58, 1991.
    [5] S. Iijima and T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter,” Nature,
    vol. 363, pp. 603–605, 1993.
    [6] M. L. P. Tan, H. C. Chin, L. L. Lim, W. S. Wong, E. L. M. Su, and C. F. Yeong, “Nanoscale
    device modeling and circuit-level performance projection of top-gated graphene nanoribbon
    field-effect transistor for digital logic gates,” Sci. Adv. Mater., vol. 6, pp. 569–576,
    2014.
    [7] C. H. Yeh, H. Medina, C. C. Lu, K. P. Huang, Z. Liu, K. Suenaga, and P. W. Chiu, “Scalable
    graphite/copper bishell composite for high-performance interconnects,” ACS Nano, vol. 8,
    pp. 275–282, 2014.
    [8] M. D. Stoller, S. J. Park, Y. W. Zhu, J. H. An, and R. S. Ruoff, “Graphene-based ultracapacitors,”
    Nano Lett., vol. 8, pp. 3498–3502, 2008.
    [9] C. F. Pan, H. Wu, C. Wang, B. Wang, L. Zhang, Z. D. Cheng, P. Hu, W. Pan, Z. Y. Zhou,
    X. Yang, and J. Zhu, “Nanowire-based high performance ”micro fuel cell”: One nanowire,
    one fuel cell,” Adv. Mater., vol. 20, p. 1644, 2008.
    [10] A. L. M. Reddy, A. Srivastava, S. R. Gowda, H. Gullapalli, M. Dubey, and P. M. Ajayan,
    “Synthesis of nitrogen-doped graphene films for lithium battery application,” ACS Nano,
    vol. 4, pp. 6337–6342, 2010.
    [11] F. N. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene
    photodetector,” Nat. Nanotechnol., vol. 4, pp. 839–843, 2009.
    [12] C. Heo, S. Y. Lee, A. Jo, S. Jung, M. Suh, and Y. H. Lee, “Flexible, transparent, and
    noncytotoxic graphene electric field stimulator for effective cerebral blood volume enhancement,”
    ACS Nano, vol. 7, pp. 4869–4878, 2013.
    [13] P. R. Wallace, “The band theory of graphite,” Phys. Rev., vol. 71, pp. 622–634, 1947.
    [14] P. Avouris, “Graphene: Electronic and photonic properties and devices,” Nano Lett.,
    vol. 10, pp. 4285–4294, 2010.
    [15] J. Yao, Y. Sun, M. Yang, and Y. X. Duan, “Chemistry, physics and biology of graphenebased
    nanomaterials: new horizons for sensing, imaging and medicine,” J. Mater. Chem.,
    vol. 22, pp. 14313–14329, 2012.
    [16] S. F. J. P. W. C. Y. C. Lin, C. C. Liu, “The electronic properties and application of
    graphene,” Phys. Bimonthly, vol. 33, pp. 191–202, 2011.
    [17] P. W. C. Y. C. Lin, S. F. Jen, “The electronic properties and potential electronic device
    application of graphene(i),” Materialsnet, vol. 291, pp. 116–122, 2011.
    [18] P. W. C. Y. C. Lin, S. F. Jen, “The electronic properties and potential electronic device
    application of graphene(ii),” Materialsnet, vol. 292, pp. 172–178, 2011.
    [19] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R.
    Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,”
    Science, vol. 320, pp. 1308–1308, 2008.
    [20] A. B. Kuzmenko, E. van Heumen, F. Carbone, and D. van der Marel, “Universal optical
    conductance of graphite,” Phys. Rev. Lett., vol. 100, p. 117401, 2008.
    [21] J. S. Bunch, S. S. Verbridge, J. S. Alden, A. M. van der Zande, J. M. Parpia, H. G. Craighead,
    and P. L. McEuen, “Impermeable atomic membranes from graphene sheets,” Nano
    Lett., vol. 8, pp. 2458–2462, 2008.
    [22] C. Lee, X. D. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and
    intrinsic strength of monolayer graphene,” Science, vol. 321, pp. 385–388, 2008.
    [23] M. Y. Huang, H. G. Yan, T. F. Heinz, and J. Hone, “Probing strain-induced electronic
    structure change in graphene by raman spectroscopy,” Nano Lett., vol. 10, pp. 4074–4079,
    2010.
    [24] Z. H. Ni, T. Yu, Y. H. Lu, Y. Y. Wang, Y. P. Feng, and Z. X. Shen, “Uniaxial strain
    on graphene: Raman spectroscopy study and band-gap opening,” ACS Nano, vol. 2,
    pp. 2301–2305, 2008.
    [25] T. Yu, Z. H. Ni, C. L. Du, Y. M. You, Y. Y. Wang, and Z. X. Shen, “Raman mapping
    investigation of graphene on transparent flexible substrate: The strain effect,” J. Phys.
    Chem. C, vol. 112, pp. 12602–12605, 2008.
    [26] X. K. Lu, M. F. Yu, H. Huang, and R. S. Ruoff, “Tailoring graphite with the goal of achieving
    single sheets,” Nanotechnology, vol. 10, pp. 269–272, 1999.
    [27] P. Blake, E. W. Hill, A. H. C. Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and
    A. K. Geim, “Making graphene visible,” Appl. Phys. Lett., vol. 91, p. 063124, 2007.
    [28] X. G. Liang, V. Giacometti, A. Ismach, B. D. Harteneck, D. L. Olynick, and S. Cabrini,
    “Roller-style electrostatic printing of prepatterned few-layer-graphenes,” Appl. Phys.
    Lett., vol. 96, p. 013109, 2010.
    [29] W. S. Hummers and R. E. Offeman, “Preparation of graphitic oxide,” J. Am. Chem. Soc.,
    vol. 80, pp. 1339–1339, 1958.
    [30] S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A.
    Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, “Graphene-based composite materials,”
    Nature, vol. 442, pp. 282–286, 2006.
    [31] C. Y. Su, Y. P. Xu, W. J. Zhang, J. W. Zhao, A. P. Liu, X. H. Tang, C. H. Tsai, Y. Z. Huang,
    and L. J. Li, “Highly efficient restoration of graphitic structure in graphene oxide using
    alcohol vapors,” ACS Nano, vol. 4, pp. 5285–5292, 2010.
    [32] I. Vlassiouk, M. Regmi, P. F. Fulvio, S. Dai, P. Datskos, G. Eres, and S. Smirnov, “Role
    of hydrogen in chemical vapor deposition growth of large single-crystal graphene,” ACS
    Nano, vol. 5, pp. 6069–6076, 2011.
    [33] T. A. Land, T. Michely, R. J. Behm, J. C. Hemminger, and G. Comsa, “Stm investigation
    of single layer graphite structures produced on pt(111) by hydrocarbon decomposition,”
    Surf. Sci., vol. 264, pp. 261–270, 1992.
    [34] P. W. Sutter, J. I. Flege, and E. A. Sutter, “Epitaxial graphene on ruthenium,” Nat. Mater.,
    vol. 7, pp. 406–411, 2008.
    [35] A. T. NDiaye, S. Bleikamp, P. J. Feibelman, and T. Michely, “Two-dimensional ir cluster
    lattice on a graphene moire on ir(111),” Phys. Rev. Lett., vol. 97, p. 215501, 2006.
    [36] J. C. Shelton, H. R. Patil, and J. M. Blakely, “Equilibrium segregation of carbon to a nickel
    (111) surface - surface phase-transition,” Surf. Sci., vol. 43, pp. 493–520, 1974.
    [37] M. Eizenberg and J. M. Blakely, “Carbon monolayer phase condensation on ni(111),” Surf.
    Sci., vol. 82, pp. 228–236, 1979.
    [38] Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen, and S.-S. Pei, “Graphene segregated on
    ni surfaces and transferred to insulators,” Appl. Phys. Lett., vol. 93, p. 113103, 2008.
    [39] A. Reina, X. T. Jia, J. Ho, D. Nezich, H. B. Son, V. Bulovic, M. S. Dresselhaus, and
    J. Kong, “Layer area, few-layer graphene films on arbitrary substrates by chemical vapor
    deposition,” Nano Lett., vol. 9, pp. 3087–3087, 2009.
    [40] A. Reina, S. Thiele, X. T. Jia, S. Bhaviripudi, M. S. Dresselhaus, J. A. Schaefer, and
    J. Kong, “Growth of large-area single- and bi-layer graphene by controlled carbon precipitation
    on polycrystalline ni surfaces,” Nano Res., vol. 2, pp. 509–516, 2009.
    [41] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi,
    and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent
    electrodes,” Nature, vol. 457, pp. 706–710, 2009.
    [42] S. T. Lee, S. Chen, G. Braunstein, X. Feng, I. Bello, and W. M. Lau, “Heteroepitaxy
    of carbon on copper by high-temperature ion-implantation,” Appl. Phys. Lett., vol. 59,
    pp. 785–787, 1991.
    [43] X. S. Li, W. W. Cai, J. H. An, S. Kim, J. Nah, D. X. Yang, R. Piner, A. Velamakanni,
    I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of
    high-quality and uniform graphene films on copper foils,” Science, vol. 324, pp. 1312–
    1314, 2009.
    [44] X. Li, W. Cai, L. Colombo, and R. S. Ruoff, “Evolution of graphene growth on ni and cu
    by carbon isotope labeling,” Nano Lett., vol. 9, pp. 4268–4272, 2009.
    [45] S. Bae, H. Kim, Y. Lee, X. F. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R.
    Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima,
    “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol.,
    vol. 5, pp. 574–578, 2010.
    [46] J. Ryu, Y. Kim, D. Won, N. Kim, J. S. Park, E. K. Lee, D. Cho, S. P. Cho, S. J. Kim, G. H.
    Ryu, H. A. S. Shin, Z. Lee, B. H. Hong, and S. Cho, “Fast synthesis of high-performance
    graphene films by hydrogen-free rapid thermal chemical vapor deposition,” ACS Nano,
    vol. 8, pp. 950–956, 2014.
    [47] L. Pietronero and S. Strassler, “Bond-length change as a tool to determine charge-transfer
    and electron-phonon coupling in graphite-intercalation compounds,” Phys. Rev. Lett.,
    vol. 47, pp. 593–596, 1981.
    [48] A. C. Ferrari, “Raman spectroscopy of graphene and graphite: Disorder, electron-phonon
    coupling, doping and nonadiabatic effects,” Solid State Commun., vol. 143, pp. 47–57,
    2007.
    [49] Y. Zhang, Z. Jiang, J. P. Small, M. S. Purewal, Y. W. Tan, M. Fazlollahi, J. D. Chudow,
    J. A. Jaszczak, H. L. Stormer, and P. Kim, “Landau-level splitting in graphene in high
    magnetic fields,” Phys. Rev. Lett., vol. 96, p. 136806, 2006.
    [50] S. Pisana, M. Lazzeri, C. Casiraghi, K. S. Novoselov, A. K. Geim, A. C. Ferrari, and
    F. Mauri, “Breakdown of the adiabatic born-oppenheimer approximation in graphene,”
    Nat. Mater., vol. 6, pp. 198–201, 2007.
    [51] A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S.
    Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring
    dopants by raman scattering in an electrochemically top-gated graphene transistor,” Nat.
    Nanotechnol., vol. 3, pp. 210–215, 2008.
    [52] D. C. Wei, Y. Q. Liu, Y. Wang, H. L. Zhang, L. P. Huang, and G. Yu, “Synthesis of n-doped
    graphene by chemical vapor deposition and its electrical properties,” Nano Lett., vol. 9,
    pp. 1752–1758, 2009.
    102
    [53] Y.-C. Lin, C.-Y. Lin, and P.-W. Chiu, “Controllable graphene n-doping with ammonia
    plasma,” Appl. Phys. Lett., vol. 96, p. 133110, 2010.
    [54] M. Wu, E. Z. Liu, and J. Z. Jiang, “Magnetic behavior of graphene absorbed with n, o,
    and f atoms: A first-principles study,” Appl. Phys. Lett., vol. 93, p. 082504, 2008.
    [55] “Bond distance trends,” http:// academic.reed.edu/ chemistry/ roco/ Geometry/ bonddistances.
    html.
    [56] H. G. Gao, J. A. Zhou, M. H. Lu, W. Fa, and Y. F. Chen, “First-principles study of the iva
    group atoms adsorption on graphene,” J. Appl. Phys., vol. 107, p. 114311, 2010.
    [57] C. N. R. Rao and R. Voggu, “Charge-transfer with graphene and nanotubes,” Mater. Today,
    vol. 13, pp. 34–40, 2010.
    [58] X. Dong, D. Fu, W. Fang, Y. Shi, P. Chen, and L.-J. Li, “Doping single-layer graphene
    with aromatic molecules,” Small, vol. 5, pp. 1422–1426, 2009.
    [59] H. Medina, Y.-C. Lin, D. Obergfell, and P.-W. Chiu, “Tuning of charge densities in
    graphene by molecule doping,” Adv. Funct. Mater., vol. 21, pp. 2687–2692, 2011.
    [60] J.-L. Laio, “High quality graphene for transparent conductive film applications,” 2013.
    [61] J. J. Golding, D. R. Macfarlane, L. Spiccia, M. Forsyth, B. W. Skelton, and A. H. White,
    “Weak intermolecular interactions in sulfonamide salts: Structure of 1-ethyl-2-methyl-
    3 benzyl imidazolium bis[(trifluoromethyl)sulfonyl]amide,” Chem. Commun., pp. 1593–
    1594, 1998.
    [62] H. Z. Geng, K. K. Kim, C. Song, N. T. Xuyen, S. M. Kim, K. A. Park, D. S. Lee, K. H.
    An, Y. S. Lee, Y. Chang, Y. J. Lee, J. Y. Choi, A. Benayad, and Y. H. Lee, “Doping and
    de-doping of carbon nanotube transparent conducting films by dispersant and chemical
    treatment,” J. Mater. Chem., vol. 18, pp. 1261–1266, 2008.
    [63] M. S.A. Abdou and S. Holdcroft, “Oxidation of -conjugated polymers with gold trichloride:
    enhanced stability of the electronically conducting state and electroless deposition
    of au0,” Synthetic Met., vol. 60, pp. 93–96, 1993.
    [64] X. S. Li, Y. W. Zhu, W. W. Cai, M. Borysiak, B. Y. Han, D. Chen, R. D. Piner, L. Colombo,
    and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent
    conductive electrodes,” Nano Lett., vol. 9, pp. 4359–4363, 2009.
    [65] K. K. Kim, A. Reina, Y. M. Shi, H. Park, L. J. Li, Y. H. Lee, and J. Kong, “Enhancing
    the conductivity of transparent graphene films via doping,” Nanotechnology, vol. 21,
    p. 285205, 2010.
    [66] H. C. Choi, M. Shim, S. Bangsaruntip, and H. J. Dai, “Spontaneous reduction of metal
    ions on the sidewalls of carbon nanotubes,” J. Am. Chem. Soc., vol. 124, pp. 9058–9059,
    2002.
    [67] F. Gunes, H. J. Shin, C. Biswas, G. H. Han, E. S. Kim, S. J. Chae, J. Y. Choi, and Y. H.
    Lee, “Layer-by-layer doping of few-layer graphene film,” ACS Nano, vol. 4, pp. 4595–
    4600, 2010.
    [68] K. Badeker, “Concerning the electricity conductibility and the thermoelectric energy of
    several heavy metal bonds,” Ann. Phys. -Berlin, vol. 22, pp. 749–766, 1907.
    [69] G. Rupprecht, “Untersuchungen der elektrischen und lichtelektrischen leitfahigkeit dunner
    indiumoxydschichten,” Z. Phys., vol. 139, pp. 504–517, 1954.
    [70] J. L. Vossen, “Rf sputtered transparent conductors system in2o3-sno2,” Rca. Rev., vol. 32,
    p. 289, 1971.
    [71] D. B. Fraser and H. D. Cook, “Highly conductive, transparent films of sputtered in2-
    xsnxo3-y,” J. Elecrochem. Soc., vol. 119, p. 1368, 1972.
    [72] P. Nath and R. F. Bunshah, “Preparation of in2o3 and tin-doped in2o3 films by a novel
    activated reactive evaporation technique,” Thin Solid Films, vol. 69, pp. 63–68, 1980.
    [73] S. Ray, R. Banerjee, N. Basu, A. K. Batabyal, and A. K. Barua, “Properties of tin
    doped indium oxide thin-films prepared by magnetron sputtering,” J. Appl. Phys., vol. 54,
    pp. 3497–3501, 1983.
    [74] C. H. Lee, K. S. Lim, and J. S. Song, “Highly textured zno thin films doped with indium
    prepared by the pyrosol method,” Sol. Energ. Mat. Sol. C., vol. 43, pp. 37–45, 1996.
    [75] D. S. Ginley and C. Bright, “Transparent conducting oxides,” Mrs. Bull., vol. 25, pp. 15–
    18, 2000.
    [76] T. Minami, “New n-type transparent conducting oxides,” Mrs. Bull., vol. 25, pp. 38–44,
    2000.
    [77] D. H. Zhang and H. L. Ma, “Scattering mechanisms of charge carriers in transparent conducting
    oxide films,” Appl. Phys. a - Mater., vol. 62, pp. 487–492, 1996.
    [78] S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland,
    and J. N. Coleman, “Silver nanowire networks as flexible, transparent, conducting films:
    Extremely high dc to optical conductivity ratios,” ACS Nano, vol. 3, pp. 1767–1774, 2009.
    [79] U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J.
    Cho, and H. Morkoc, “A comprehensive review of zno materials and devices,” J. Appl.
    Phys., vol. 98, p. 041301, 2005.
    [80] U. S. Bhansali, M. A. Khan, D. K. Cha, M. N. AlMadhoun, R. P. Li, L. Chen, A. Amassian,
    I. N. Odeh, and H. N. Alshareef, “Metal-free, single-polymer device exhibits resistive
    memory effect,” ACS Nano, vol. 7, pp. 10518–10524, 2013.
    [81] L. Xiao, Z. Chen, C. Feng, L. Liu, Z. Q. Bai, Y. Wang, L. Qian, Y. Y. Zhang, Q. Q. Li,
    K. L. Jiang, and S. S. Fan, “Flexible, stretchable, transparent carbon nanotube thin film
    loudspeakers (vol 8, pg 4539, 2008),” Nano Lett., vol. 12, pp. 2652–2652, 2012
    [82] S. Bae, S. J. Kim, D. Shin, J. H. Ahn, and B. H. Hong, “Towards industrial applications
    of graphene electrodes,” Phys. Scripta, vol. T146, p. 014024, 2012.
    [83] D. R. Cairns, R. P. Witte, D. K. Sparacin, S. M. Sachsman, D. C. Paine, G. P. Crawford,
    and R. R. Newton, “Strain-dependent electrical resistance of tin-doped indium oxide on
    polymer substrates,” Appl. Phys. Lett., vol. 76, pp. 1425–1427, 2000.
    [84] L. G. De Arco, Y. Zhang, C. W. Schlenker, K. Ryu, M. E. Thompson, and C. W. Zhou,
    “Continuous, highly flexible, and transparent graphene films by chemical vapor deposition
    for organic photovoltaics,” ACS Nano, vol. 4, pp. 2865–2873, 2010.
    [85] “Introduction capacitive touch technology and analysis,” Top Team Information Co.,Ltd.,
    ISBN-9789865764616,2014.
    [86] “Introduction touch panel technology,” Jian-Hsin Publishing Inc., ISBN-
    9789862242193,2012.
    [87] “Resistive typed touch technology,” http:// www.moneydj.com/ kmdj/ wiki/
    wikiviewer.aspx?keyid=21079cbd-dabd-475d-b25b-8268472ba8ae.
    [88] “Principle of capacitive,” http://read.pudn.com/downloads149/ebook/643630/book.pdf.
    [89] “Principle of acoustic,” http://www.gtouch.com.tw/tc/techprinciple.html.
    [90] “superc-touch,” http://superc-touch.com/doc-touch/ctouch1.pdf.
    [91] C.-H. T. S.-L. H. Chin-Fu Chang, Cheng-Han Lee, “Method and device for analyzing
    position in mutual capacitance detection,” US Patent, vol. US20110084929 A1, 2011.
    [92] Y. Ogawa, B. S. Hu, C. M. Orofeo, M. Tsuji, K. Ikeda, S. Mizuno, H. Hibino, and H. Ago,
    “Domain structure and boundary in single-layer graphene grown on cu(111) and cu(100)
    films,” J. Phys. Chem. Lett., vol. 3, pp. 219–226, 2012.
    [93] F. Systems, “Fts capacitive touch panel design rules only for under 4.3¡¨ panel,” 2010.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE