簡易檢索 / 詳目顯示

研究生: 洪仕儒
Hong, Shi-Ru
論文名稱: 以分子動力學模擬研究吸附於帶電表面的高分子電解質之行為
Behavior of single polyelectrolytes adsorbed on a charged surface: A molecular dynamics simulation study
指導教授: 蕭百沂
Hsiao, Pai-Yi
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 50
中文關鍵詞: 分子動力學模擬高分子電解質帶電表面構形擴散
外文關鍵詞: molecular dynamics simulation, polyelectrolyte, charged surface, conformation, diffusion
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於處在固態以及液態界面的高分子,在諸多領域上的運用都具有相當之重要性,為了研究處於如此系統下的高分子之行為,在本論文中我們利用分子動力學模擬研究室溫下的溶液中,吸附於帶電基板表面上單獨的線性高分子電解質之行為。首先,我們研究了高分子的構形如何隨著基板面電荷密度的變化而改變。在帶電基板表面為低面電荷密度的情形下,高分子的構形不會受到帶電表面的影響。隨著面電荷密度的增加,受到高分子上的吸附反離子數量減少以及高分子吸附在基板表面上的因素所影響,高分子的結構變得較為拉伸。不過,當面電荷密度超過某個臨界值,此時幾乎每個高分子的鍊段都吸附在基板上,同時間基板所解離的正電荷陰離子開始對同樣是吸附在基板表面高分子產生顯著的影響,使高分子採取較為蜷縮的結構。另外,我們還研究了吸附於帶電基板表面高分子的擴散行為。高分子的擴散係數的結果顯示了:在低高電荷密度的區域,高分子的擴散行為基本上遵循在本體溶液(bulk solution)中由勞司動力論(Rouse dynamics)所作的敘述;但是在高電荷密度時,由於基板與高分子之間的作用力較強,導致較高的摩擦力,所以高分子的擴散係數隨著基板的面電荷密增加而減少。這些結果可以幫助我們了解線性高分子電解質吸附於帶電基板上的行為。


    The ubiquity of polymers interacting with solid surfaces in nature makes the phenomenon of great importance in many fields. In this thesis, the behaviors of a single charged linear polyelectrolyte chain in solution at room temperature that is adsorbed on a charged surface have been investigated with molecular dynamic simulations. We investigated how the chain conformation is affected by the surface charge density. At low surface charge density, the chain conformation is not altered. As the surface charge density increases, the structure of polyelectrolyte becomes swollen which can be attributed to the decrease of counterion condensation and the effect of polyelectrolyte gets in touch with a charged surface. Once the surface charge density exceeds a critical value, anions that are dissolved from a charged surface begin to influence the adsorbed polyelectrolyte chain. And this will induce a compact structure of the chain. We also studied the dynamic properties of the adsorbed chain. At low surface charge density, the results of diffusion coefficient show that the chain follows the description of Rouse dynamics in bulk solution. However, when the surface charge density is high enough, the strong wall-polymer interaction will increase the friction. So the diffusion coefficient will decrease as the surface charge density increases. Those results can help us to understand the behaviors of a linear polyelectrolyte chain adsorbed on a charged surface.

    第一章 簡介.............................1 1.1軟物質 .............................1 1.2高分子電解質(Polyelectrolyte)...................1 1.3 界面上的高分子電解質 ......................1 1.4高分子電解質薄膜 ........................2 1.5帶電表面上的高分子電解質 ....................3 1.4文獻回顧 ............................3 1.5研究動機 ............................8 第二章 模型與方法 .........................9 2.1模型 ..............................9 2.1.1系統 .............................9 2.1.2粒子作用力..........................13 2.2方法..............................15 2.2.1分子動力學模擬(Molecular dynamics simulation)..........15 2.2.2 Langevin dynamics.......................15 2.2.3邊界條件...........................16 2.2.4 Ewald summation .......................17 2.2.5 LAMMPS...........................18 第三章 參數設定 ..........................19 第四章 結果與討論 .........................20 4.1不同吸附程度下高分子的行為...................20 4.2高分子鍊與基板間的最短距離以及最長距離.............22 4.3構形(Conformation).......................24 4.3.1旋轉半徑(Radius of gyration)..................24 4.3.2旋轉半徑張量的本徵值(Eigenvalues of gyration tensor).......28 4.3.3 方向秩序參數(Orientational order parameter)...........31 4.3.4 有效吸附電荷.........................32 4.4高分子之拉伸臨界電場......................34 4.5動態行為............................38 4.5.1擴散係數(Diffusion coefficient).................38 4.5.2摩擦係數(Friction coefficient)...............40 4.6結果回顧............................42 第五章 結論 ............................45 參考文獻..............................46 表目錄 表2.1:基板球體帶電量與基板面電荷密度的對照表...........12 表4.1:臨界面電荷密度的對照表...................42 圖目錄 圖2.1:系統配置示意圖.......................10 圖4.1:不同面電荷密度下的高分子構形示意圖.............21 圖4.2:高分子鍊與基板間的最短距離以及最長距離之示意圖.......22 圖4.3:不同面電荷密度下高分子與基板間的最短距離以及最長距離....24 圖4.4:不同面電荷密度下的平行表面方向的高分子均方旋轉半徑分量 ...............................26 圖4.5:高分子群類以及陰離子群類的滲透壓隨著面電荷密度變化的情形..28 圖4.6:旋轉半徑張量的本徵值開方根所代表等效橢體的軸長之示意圖...29 圖4.7:不同面電荷密度下的高分子旋轉半徑張量的本徵值開方根 、 以及 .................................31 圖4.8:不同面電荷密度下的高分子平行表面方向的高分子旋轉半徑分量 及旋轉半徑張量的本徵值中最小值的開方根 ...............30 圖4.9:不同電荷密度下的高分子方向秩序參數.............32 圖4.10:不同面電荷密度下的高分子整體帶電量 ............34 圖4.11:不同電場強度下的高分子末端距與鍊長的比值 .........36 圖4.12:不同鍊長的高分子末端距與鍊長比值隨等效電場變化之情形 ...37 圖4.13:臨界拉伸電場與鍊長對數-對數圖...............38 圖4.14:不同面電荷密度下的高分子平移擴散係數 ...........39 圖4.15:高分子的擴散係數與以勞斯模型推算出之擴散係數比較圖 ....40 圖4.16:不同面電荷密度下的高分子等效摩擦係數 ...........41

    [1] E. A. S. Doherty, R. J. Meagher, M.N. Albarghouthi, A. E. Barron, Electrophoresis, 24, 34, 2003.
    [2] C. Robb, J. Liq. Chromatogr., 30, 729, 2007.
    [3] J. Horvath, V. Dolnik, Electrophoresis, 22, 644, 2001.
    [4] J. Znaleziona, J. Petr, R. Know, V. Maier, J. Sevcik, Chromatographia, 67, S5, 2008.
    [5] O. A. Hickey, J. L. Harden, G. W. Slater, Phys. Rev. Lett., 102, 108304, 2009.
    [6] P. K. Wong, T.-H. Wang, J. Deval, C.-M. Ho, IEEE/ ASME Trans. Mechatron., 9, 366, 2004.
    [7] H. A. Stone, A. D. Stroock, A. Ajdari, Annu. Rev. Fluid Mech., 36, 381, 2004.
    [8] Z. Yuan, A. L. Garcia, G. P. Lopez, D. N. Petsev, Electrophoresis, 28, 595, 2007.
    [9] S. Forster, M. Schmidt, Adv. Polym. Sci., 13, 51, 1995.
    [10] C. Holm, J. Joanny, K. Kremer, R. Netz, P. Reineker, C. Seidel, T. Vilgis, R. Winkler, Adv. Polym. Sci., 166, 67, 2004.
    [11] J. Barrat, J. Joanny, Adv. Chem. Phys., 94, 1, 1996.
    [12] P. G. Bruce, M. T. Hardgrave, C. A. Vincent, Solid state Ionics, 53, 1087, 1992.
    [13] I. I. Olsen, R. Koksbang, E. Skou, Electrochim. Acta., 40, 1701, 1995.
    [14] M. Doyle, T. F. Fuller, J. Newman, Electrochim. Acta., 39, 2073, 1994.
    [15] P. G. de Gennes, Scaling Concepts in Polymer Physics; Cornell University Press: Ithaca, NY, 1979.
    [16] S. A. Sukhishvili, Y. Chen, J. D. Muller, et al, Nature, 406, 6792, 2000.
    [17] F. W. Wiegel, J. Phys. A, 10, 299, 1977.
    [18] H. A. Van der Schee, J. Lyklema, J. Phys. Chem., 88, 6661, 1984.
    [19] M. Muthukumar, J. Chem. Phys., 86, 7230, 1987.
    [20] M. R. Böhmer, O. A. Evers, J. M. H. M. Scheutjens, Macromolecules, 23, 2288, 1990.
    [21] R. Varoqui, A. Johner, A. Elaissari, J. Chem. Phys., 94, 6873, 1991.
    [22] R. Varoqui, J. Phys. II, 3, 1097, 1993.
    [23] O. V. Borisov, E. B. Zhulina, T. M. Birshtein, J. Phys. II, 4, 913, 1994.
    [24] I. Borukhov, D. Andelman, H. Orland, Europhys. Lett., 32, 499, 1995.
    [25] X. Châtellier and J.-F. Joanny, J. Phys. II, 6, 1669, 1996.
    [26] P. Linse, Macromolecules, 29, 326, 1996.
    [27] V. Shubin and P. Linse, Macromolecules, 30, 5944, 1997.
    [28] I. Borukhov, D. Andelman, H. Orland, Macromolecules, 31, 1665, 1998.
    [29] J. F. Joanny, Eur. Phys. J. B, 9, 117, 1999.
    [30] R. R. Netz, J. F. Joanny, Macromolecules, 32, 9013, 1999.
    [31] A. V. Dobrynin, A. Deshkovski, M. Rubinstein, Phys. Rev. Lett., 84, 3101, 2000.
    [32] A. V. Dobrynin, A. Deshkovski, M. Rubinstein, Macromolecules, 34, 3421, 2001.
    [33] R. Netz, D. Andelman, Phys. Rep., 380, 1, 2003.
    [34] A. V. Dobrynin, M. Rubinstein, J. Phys. Chem. B, 107, 8260, 2003.
    [35] A. Shafir, D. Andelman, R. R. Netz, J. Chem. Phys., 119, 2355, 2003.
    [36] R. de Vries, F. Weinbreck, C. G. de Kruif, J. Chem. Phys., 118, 4649, 2003.
    [37] H. Cheng, O. de la Cruz, J. Chem. Phys., 119, 12635, 2003.
    [38] C.-H. Cheng, P.-Y. Lai, Phys. Rev. E, 70, 061805, 2004.
    [39] C.-H. Cheng, P.-Y. Lai, Phys. Rev. E, 72, 033902, 2005..
    [40] B. Maier, J. O. Radler, Phys. Rev. Lett., 82, 1911, 1999.
    [41] B. Maier, J. O. Radler, Macromolecules, 33, 7185, 2000.
    [42] L. Zhang, S. Granick, Proc. Natl. Acad. Sci. U.S.A.,102, 9118, 2005.
    [43] S. A. Sukhishvili, Y. Chen, J. D. Muller, E. Gratton, K. S. Schweizer, S. Granick, Macromolecules, 35, 1776, 2002.
    [44] D. J. Olson, J. M. Johnson, P. D. Patel, et al, Langmuir, 17, 7396, 2001.
    [45] V. Kahl, M. hennig, B. Maier, J. O. Radler, Electrophoresis ,30, 1276, 2009.
    [46] B. Jing, Q, Yang, Y. Zhu, J. Zhao, J. Poly. Sci.: Part B: Poly. Phys, 10 ,1002, 2009.
    [47] F. Kuhner, M. Erdmann, L. Sonnenberg, A. Serr, J. Morfill, H. E. Gaub, Langmuir, 22, 11180, 2006.
    [48] J. Zhao, S. Granick, J. Am. Chem. Soc., 126, 6242, 2004.
    [49] J. Zhao, S. Granick, Macromolecules, 40, 1243, 2007.
    [50] J. Yang, J. Zhao, C. C. Han, Macromolecules, 41, 7284, 2008.
    [51] H. Yang, Z. Y. Lu, Z. S. Li, C. C. Sun, J. Mol. Model, 12, 432, 2005.
    [52] D. Mukherji, M. H. Muser, Macromolecules, 40, 1754, 2007.
    [53] R. Messina, Phy. Rev. E, 70, 051802, 2004.
    [54] R. Messina, J. Chem. Phy., 124, 014705, 2006.
    [55] R. Messina, Eur. Phys. J. E, 22, 325, 2007.
    [56] Jan-Michael Y. Carrillo, A. V. Dobrynin, Langumuir, 23, 2472, 2007.
    [57] G. Reddy, R. Chang, A. Yethiraj, J. Chem. Theory Comput., 2, 630, 2006.
    [58] G. Reddy, A. Yethiraj, J. Chem. Phys. 132, 074903, 2010.
    [59] T. G. Desai, P. Keblinski, S. K. Kumar, Polymer, 47, 722, 2005.
    [60] T. G. Desai, P. Keblinski, Phys, Rev. Lett., 98, 218301, 2007.
    [61] D. Mukherji, G. Bartels, M. H. Muser, Phys. Rev. Lett., 100, 068301, 2008.
    [62] R. R. Netz, Phys. Rev. Lett., 71, 138101, 2003.
    [63] N. C. Stellwagen, C. Gelfi, P. G. Righetti, BIOPOLYMERS, 42, 687, 1997.
    [64] J. L. Viovy, Rev. Modern Phys., 72, 813, 2000.
    [65] R. K. Iler, Chemistry of Silica, Wiley, NY, 1979.
    [66] L. R. Snyder, J. J. Kirkland, Introduction to Modern Liquid Chromatography, Wiley, NY, 1979.
    [67] http://lammps.sandia.gov/
    [68] M. J. Stevens, K. Kremer, J. Chem. Phys., 103, 1669, 1995.
    [69] M. Rubinstein, R.H. Colby, Polymer Physics, Oxford, USA, 2003.
    [70] O. Hahn, L. Delle Site, K. Kremer, Macromol. Theory Simul. 10, 288, 2001.
    [71] K. Solc, J. Chem. Phys., 55, 335, 1971.
    [72] K. Solc, J. Chem. Phys., 54, 2756, 1971.
    [73] K. Grass, C. Holm, Soft Matter, 5, 2079, 2009.
    [74] P. Y. Hsiao, K. M. Wu, J. Phys. Chem. Lett. B, 112, 13177, 2008.
    [75] R. R. Netz, J. Phys. Chem. B, 107, 8208, 2003.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE