研究生: |
余大全 Da-Cyuan Yu |
---|---|
論文名稱: |
新型態共軛延伸之非線性光學高分子—主鏈型之研究 Integrating π-Electron of Chromophore and Conjugated Polymer – Main Chain System Study |
指導教授: |
薛敬和
Ging-Ho Hsiue |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 116 |
中文關鍵詞: | 非線性光學 、共軛高分子 、賓主型 、主鏈型 、喃 、咔唑 |
外文關鍵詞: | Nonlinear Optical, NLO, Conjugated polymer, guest-host, main-chain, pyran, carbazole |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究合成出發色團9-Hexyl-3,6-bis-[2-(4-nitro-phenyl)-vinyl]-9- H-carbazole (CzPhNO2)及2-{2,6-Bis-[2-(4-diethylamino-phenyl)-vinyl]- pyran-4-ylidene}-malononitrile (DCDEt),利用Poly(N-vinyl carbazole) (PVK)及共軛高分子Polycarbazole (PCZ),製備四組賓主型非線性光學薄膜—S1-a (PVK+CzPhNO2),S1-b (PVK+PCZ+CzPhNO2),S2-a (PVK+DCDEt),S2-b (PVK+PCZ+DCDEt)。四組賓主型薄膜中,經由UV 吸收光譜測得其λonset而計算出之能隙值發現,於PVK中加入少量PCZ可以降低整體材料電荷轉移的能隙,將S1系列能隙從2.42eV 降至 2.40 eV,S2系列的能隙從2.07eV降至2.06eV。而從材料之配向極化發現加入PCZ之組別(S1-b, S2-b)其二階諧波強度均有些微提昇,S1系列其二階諧波強度從16.7提升至19.8 pm/V,S2系列從30.4提升至33.3 pm/V。PCZ的塑劑效應使材料的動態及時間穩定性降低,而CzPhNO2之嵌合效應則提升材料的穩定性。
在主鏈型材料的研究上,利用2-(2,6-Diphenethyl-pyran-4- ylidene)-malononitrile分別進行Yamamoto聚縮合及Suzuki 偶合成功合成出一系列具主鏈共軛結構之非線性光學高分子P1、P2、P3。三個高分子之Td/Tg分別為276℃/125.6℃(P1)、329.5℃/118.2℃(P2)及301.7℃/149.1℃(P3)。在配向極化過程中,P1展現最佳的二次非線性光學係數11.5pm/V,其次依序為P3及P2分別為9.1 pm/V及5.1 pm/V。材料之熱穩定性測試,在動態熱穩定性測試結果P1亦展現最佳的穩定性,P1、P2、P3之T0分別為100.4℃、86.4℃及81.3℃。
Conjugated polymers used in NLO are investigated in this study. Poly(n-vinyl-carbazole) (PVK) and polycarbazole (PCZ) have been used as a host polymer. Two chromophores, 9-Hexyl-3,6-bis-[2-(4- nitro-phenyl)-vinyl]-9H-carbazole (CzPhNO2) and 2- {2,6- Bis- [2- (4- diethylamino-phenyl)-vinyl]-pyran-4-ylidene}-malononitrile (DCDEt), have been prepared and used in four guest/host NLO systems. The d33 value has been improved when PCZ was added. The anchoring effect of CzPhNO2 leads better thermal stability than DCDEt, meanwhile, the plasticizer effect of PCZ leads lower effective transition temperature (T0). UV-Vis spectra show apparent red-shift in each system after casting. Accordingly, π-aggregation may be one of the reasons which improve d33 of the material.
Besides, three conjugated polymers have been synthesized successfully as main-chain NLO materials by self-polymerization and Suzuki coupling. The Td/Tg of the three polymers are 276℃/125.6℃(Poly(2-(2,6- distyryl-pyran-4-ylidene)-malononitrile)—P1), 329.5℃/118.2℃(Poly{2-[2-(2-Biphenyl-4-yl-vinyl)-6-styryl-pyran-4-ylidene]- malononitrile}—P2), and 301.7℃/149.1℃(Poly{(9,9-dihelxyl- 9H-fluorene-2,7-yldene)-alt—(2-{2,6-bis[2-(2-hexyloxyl-5-phenylene)vinyl]-pyran-4-ylidene}-malononitrile)} —P3). P1 performs the best SH intensity of 11.5 pm/V between the three polymers while p3 performs the best Tg. The temporal stability was investigated by tracing the SH coefficient as a function of temperature. The effective transition temperature of P1, P2, and P3 are 100.4℃, 86.4℃, and 81.3℃.
1. Prazad N.,and David J. Williams, Introduction to Nonlinear Optical Effect in Molecules and Polymer, John Willey and Sons, New York, 1987.
2. A. L. Schawlow, C. H. Townes, Phys. Rev. 1958, 112, 1940.
3. P. A. Franken, A. E. Hill, C. W. Peters, G. Weinreich, Phys. Rev. Lett. 1961, 7, 118.
4. P. D. Maker, R. W. Terhune, M. Nisenoff, C. M. Savage, Phys. Rev. Lett. 1962, 8, 21.
5. P. A. Franken, J. F. Ward, Rev. Mod. Phys. 1963, 35, 23.
6. F. Zernike, J.E. Midwinter. Applied Nonlinear Optics, Wiley 1973.
7. M. V. Hobden. J. Appl. Phys. 1967, 38, 4365.
8. O. Ostroverkhova, W. E. Moerner. Chem. Rev. 2004, 104, 3267.
9. K. D. Singer, J. E. Sohn, S. J. Lalama, Appl. Phys. Lett. 1986, 4, 968.
10. M. Stähelin, C. A. Walsh, D. M. Burland, R. D. Miller, R. J. Twieg, W. Volksen, J. Appl. Phys. 1993, 73(12), 8471.
11. W. J. Kuo, G. H. Hsiue, R. J. Jeng, Macromolecules, 2001, 34, 2373.
12. Singer, K.; Kuzyk, M.; Appl. Phys. Lett. 1988, 53, 1800.
13. Leng, W.; Zhou, Y.; Xu, Q.; Liu, J.; Macromolecules; 2001, 34, 4774.
14. W. J. Kuo, G. H. Hsiue, R. J. Jeng, Macromol. Chem. Phys., 202(9), 1782.
15. D. M. Burland, R. D. Miller, C. A. Walsh. Chem. Rev., 1994, 94, 31.
16. B. F. Levine, and G. F. Bethea, J. Chem. Phys. 1975, 63, 2666.
17. J. L. Oudar, J. Chem. Phys. 1977, 67, 446.
18. P. D. Southgate, Appl. Phys. Lett. 1976, 28, 250.
19. R. S. Finn, J. F. Ward, J. Chem. Phys. 1974, 60, 454.
20. J. F. Ward, I. J. Bigio, Phys. Rev. 1975, A 11, 60.
21. A. Duclic, C. Flytzanis, C. L. Tang, D. Pepin, M. Fitzon, Y. Hoppiliard, J. Chem. Phys, 1981, 74, 1559.
22. J. Wang, M. Lu, Y. Pan, Z. Peng, J. Org. Chem. 2002, 67, 7781.
23. C. Cai, I. Liakatas, M. S. Wong, M. Bösch, C. Bosshard, P. Gunter, S. Concilio, N. Tirelli, U. W. Suter, Org. Lett. 1999, 1(11), 1847.
24. S. Ohnishi, F. L. Gu, K. Naka, A. Imamura, B. Kirtman, Y. Aoki, J. Phys. Chem. A. 2004, 108, 8478.
25. A. Dulcic, and C. Sauteret, J. Chem. Phys. 1978, 25, 402.
26. J. L. Oudar, D. S. Chemla, Chem. Phys, 1977, 66, 2664.
27. J. D. Morley, V. J. Docherty, and D. Pugh, J. Chem. Soc. Perkin. Trans. 1987, 2, 1357.
28. G. Berkovic, Y. R. Shen, M. Schadt, Mol. Cryst. Liq. Cryst. B 1987, 150, 607.
29. M. Panda, J. Chandrasekhar, J. Am. Chem. Soc. 1998, 120, 13517.
30. D. K. Taylor, and E. T. Samulski, Macromolecules 2000, 33, 2355.
31. H. Yamamoto, S. Katogi, T. Watanabe, H.Sato, S. Miyata, T.Hosomi, Appl. Phys. Lett. 1992, 60, 8, 935.
32. S. Miyata, H. Sasabe, “Poled Polymers and Their Applications to SHG and EO Devices”, 1997, OPA Amsterdam, Netherlands.
33. C. Zhao, C. K. Park, P. N. Prasad, Chem. Mater. 1995, 7, 1237.
34. T. Isoshima, T. Wada, Y. D. Zhang, E.Brouyere, J. L. Bredas, H. Sasabe, J. Chem. Phys. 1996, 104 (7), 2467.
35. G. R. Meredith, J. G. Vandusen, D. J. Williams, Macromolecules 1982, 15, 1385.
36. Y. Zhang. L. Wang, T. Wada, H. Sasabe, Macromolecules 1996, 29, 1569.
37. J. D. Stenger-Smith, P. Zarras, R. A. Hollins, A. P. Chafin, L. H. Merwin, R. Yee, G. A. Lindsay, W. N. Herman, R. F. Gratz, E. G. Nickel, J. Polym. Sci., Part A: Polym. Chem. 1993, 2824.
38. 游一成;“主鏈型含2,7-咔唑高分子之非線性光學及光物理特性研究”,國立清華大學化學工程系碩士論文民國九十四年。
39. W. J. Kuo, G. H. Hsiue, R. J. Jeng, J. Mater. Chem. 2002, 12(4), 868.
40. W. J. Kuo, G. H. Hsiue, R. J. Jeng, Macromol. Chem. Phys. 2001, 202(9), 1782.
41. C. M. Whitaker, E. V. Patterson, K. L. Kott, and R. J. McMahon, J. Am. Chem. Soc., 1996, 118, 9966.
42. C. R. Moylan, S. Ermer, S. M. Lovejoy, I. McComb, D. S. Leung, R. Wortmann, P. Krdmer, R. J. Twieg, J. Am. Chem. Soc. 1996, 118, 12950.
43. T. Wada, Y. D. Zang, Y, S. Choi, H. Sasabe, J. Phys. D: Appl. Phys. 1993, 26, B221.
44. Y. D. Zang, L. Wang, T. Wada, H. Sasabe, Macromol. Chem. Phys, 1996, 34, 2298.
45. T. Wada, Y. D. Zang, M. Yakamodo, H. Sasabe, Mol. Crys. Liq. Crys. 1993, 277, 85.
46. Y. D. Zang, L. Wang, T. Wada, H. Sasabe, Macromol. Chem. Phys, 1996, 197, 1877.
47. Y. D. Zang, T. Wada, H. Sasabe, J. Polym. Sci., Part A: Polym. Chem. 1996, 34, 2298.
48. Y. D. Zang, L. Wang, T. Wada, H. Sasabe, Macromol. Chem. Phys, 1996, 197, 667.
49. Y. D. Zang, T. Wada, H. Sasabe, J. Polym. Sci., Part A: Polym. Chem. 1996, 35, 2041.
50. J. Luo, J. Qin, H. Kang, C. Ye, Chem. Mater. 2001, 13, 927.
51. J. Zyss, I. Ledoux, S. Volkov, V. Chernyak, S. Mukamel, G. P. Bartholomew, and G. C. Bazan, J. Am. Chem. Soc, 2000, 122, 11956.
52. G. P. Bartholomew, G. C. Bazen, J. Am. Chem. Soc. 2002, 124, 5183.
53. G. P. Bartholomew, I. Ledoux, S. Mukamel, G. C. Bazen, J. Zyss, J. Am. Chem. Soc. 2002, 124, 13480.
54. P. G. Lacroix, I. I. Padilla-marthinez, H. L. Sandoval, K. Nakatani, New. J. Chem., 2004, 28, 542.
55. (a)Oatai, S.; Israeli, Y. J. Am. Soc. 1960,2020. (b)V. Boucrd, D. Ades, A. Siove, D. Romero, M. Schaer, L. Zuppiroli, Macromolecules 1999, 32, 4729.
56. T. Yamamoto, A/ Morita, Y. Miyazaki, T. Maruyama, H. Wakayama, Z. H. Zhou, Y. Nakamura, T. Kanbara, Macromolecules 1992, 25, 1214.
57. N. Miyaura, A. Suzuki, Chem. Rev. 1995, 95, 2457.
58. C. Xia, and R. C. Advincula, Macromolecules 2001, 34, 5854.
59. B. Liu, W. L. Yu,Y. H. Lai, and W. Huang, Chem. Mater. 2001, 13, 1984.