簡易檢索 / 詳目顯示

研究生: 蔡惠雯
Tsai, Hui-Wen
論文名稱: 臺灣蝴蝶蘭CBF基因啟動子在阿拉伯芥轉殖株中之分析
Characterization of a Phalaenopsis aphrodite C-repeat binding factor (PaCBF) promoter in transgenic Arabidopsis plants
指導教授: 林彩雲
Lin, Tsai-Yun
口試委員: 曾夢蛟
楊明德
楊長賢
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 61
中文關鍵詞: 蝴蝶蘭CBF
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   植物在生長過程中,會遭受到各種不同嚴苛的環境變化,寒冷、乾旱和高鹽是植物比較常接觸到的非生物性逆境。當暴露在這些環境之下,有些植物能適應環境而維持生長。溫度是調控植物生長的一個重要因子,低溫影響熱帶和亞熱帶植物的生長和收成。而當植物受到低溫刺激時會誘導CBF基因表現,CBF基因活化幫助植物增加對低溫的抵抗能力。
      蘭花培育已成國際商品,臺灣蝴蝶蘭(Phalaenopsis aphrodite)是重要的產銷花卉。本論文的目的是分離並探討PaCBF1基因啟動子的活性。實驗將不同區域的啟動子片段構築於報導基因β-glucuronidase (GUS)之前,利用暫時性轉殖至柴胡細胞和穩定轉植至阿拉伯芥轉殖株的方式分析PaCBF1啟動子的強度。暫時性的GUS表現量顯示PaCBF1啟動子的強度約為花椰菜鑲嵌病毒35S啟動子的五分之一。分析阿拉伯芥轉殖株含不同區域之PaCBF1啟動子的強度約為CaMV35S的三分之一。除了含−515到+74區域的轉植株呈現失去啟動子活性。基因槍轉殖的結果顯示PaCBF1啟動子在臺灣蝴蝶蘭中不會有GUS活性的表現。這些實驗結果顯示PaCBF1啟動子的−701到−515區域可能含有會被阿拉伯芥中的轉錄因子所調控的重要元素序列。分析阿拉伯芥轉殖株在非生物逆境之下的表現顯示低溫能夠活化PaCBF1啟動子的表現。


    Table of contents 摘要 i Abstract ii 謝誌 iv Table of contents v List of Tables ix List of Figures x Abbreviations xii Introduction 1 Materials and Methods 7 1. Plant growth condition 7 ●Orchid (Phalaenopsis aphrodite) plant culture 7 ●Bupleurum kaoi cell suspension culture 7 ●Transgenic Arabidopsis thaliana plants 7 2. Stress treatments 8 3. Genomic DNA extraction 8 ●Orchid genomic DNA extraction using the CATB method 8 ●Genomic DNA extraction from transgenic Arabidopsis thaliana plants 10 4. Total RNA extraction 10 5. Cloning of PaCBF1 promoter and identification of its gene transcription start site 11 ●Obtaining the 5'-flanking region of PaCBF1 11 ●Identification of the transcription start site 12 ●DNA ligation 12 ● Competent cell preparation 12 ●Bacterial transformation 13 ● Mini-preparation of plasmid DNA 13 ● Double-stranded DNA sequencing 13 ●Construction of the PaCBF1 promoter and its 5'-deletion fragments and fused to the GUS reporter gene 14 6. Large- scale plasmid DNA preparation 14 7. PEG-mediated protoplast transformation 15 ●Preparation of B. kaoi protoplasts 15 ●PEG transformation of protoplasts 16 ●Transient transactivation assay in B. kaoi protoplast 17 8. Quantification of RLUC (p35S::RLUC) and GUS activity in transformed protoplasts 17 ●Renilla Luciferase® assay 17 ●Measuring β-glucuronidase (GUS) activity 17 9. Histochemical staining and fluorometric quantification of GUS activity in transgenic plants 18 ●Histochemical staining of GUS acitivity 18 ●Fluorometric analysis of GUS activity 19 10. Semi-quantitative RT-PCR 19 11. Biolistic transfection 20 Results 22 1. Isolation of the Phalaenopsis aphrodite PaCBF1 promoter 22 2. PaICE1 transactivated the PaCBF1 promoter under cold stress 23 3. PaICE1 bound and transactivation the 4×MYC element in the PaCBF1 promoter 24 4. Quantitative analysis of the PaCBF1 promoter in B. kaoi cells 24 5. Expression analyses of Arabidopsis plants carrying the PaCBF1 promoter and GUS fusion constructs 25 6. Deletion analysis of the PaCBF1 promoter in transgenic plants 27 7. The PaCBF1 promoter did not activate GUS gene in homologous transformants 29 8. Activity of the PaCBF1 promoter in transgenic Arabidopsis is affected by abiotic stresses 29 9. Low temperature (4°C) activated the PaCBF1 promoter in transgenic Arabidopsis plants 30 Discussion 32 References 36 Tables 43 Figures 45

    1. Abe H., Yamaguchi-Shinozaki K., Urao T., Iwasaki T., Hosokawa D., Shinozaki K. 1997. Role of Arabidopsis MYC and MYB Homologs in Drought- and Abscisic Acid-Regulated Gene Expression. The Plant Cell 9:1859-1868.
    2. Baker, S.S, Wilhelm, K.S. and Thomashow, M.F. (1994). The 5’-flanking region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought-, and ABA-regulated gene expression. Plant Molecular Biology 24:701-713
    3. Chinnusamy V., Ohta M., Kanrar S., Lee B.-H., Hong X., Agarwal M., Zhul J.-K. 2003. ICE1 a regulator of cold- induced transcriptome and freezing tolerance in Arabidopsis. Genes & Development 17:1043-1054
    4. Chinnusamy V., Zhu J., Zhu J.-K., 2007. Cold stress regulation of gene expression in plants. Trends in Plant Science 12:444-451
    5. Chinnusamy V., Zhu J.-K., Sunkar R. 2010. Gene Regulation during Cold Stress Acclimation in Plants. Methods in Molecular Biology 639: 39-55
    6. Christenson 1995. An overview of the genus Phalaenopsis. Orchid Digest 59:19-22
    7. Dubouzet JG., Sakuma Y., Ito Y., Kasuga M., Dubouzet EG., Miura S., Seki M., Shinozaki K., Yamaguchi-Shinozaki K. 2003. OsDREB gene in rice, Oryza sativa L., encode transcription activators that functions in drought-, high-salt- and cold-responsive gene expression. Plant Journal 33:751-763
    8. Fowler S, Thomashow MF. 2002. Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. The Plant Cell 14:1675-1690
    9. Gilmour S.J., Zarka D.G., Stockinger E.J., Salazar M.P., Houghton J.M., Thomashow M.F. 1998. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant Journal 16:433-442
    10. Grace M.L., Chandrasekharan M.B., Hall T.C., Crowe A.J. 2004. Sequence and Spacing of TATA Box Elements Are Critical for Accurate Initiation from the beta-Phaseolin promoter. The journal of biological chemistry 279:8102-8110
    11. Grandori C., Cowley S.M., James L.P., Eisenman R.N. 2000. The MYC/MAX/MAD network and the transcriptional control of cell behavior. Annual review of cell and developmental biology 16:653-699
    12. Gutha L. R., Reddy A.R. 2008. Rice DREB1B promoter shows distinct stress-specific responses, and the overexpression of cDNA in tobacco confers improved abiotic and biotic stress tolerance. Plant Molecular Biology 68:533-555
    13. Haake V, Cook D, Riechmann JL, Pineda O, Thomashow MF, Zhang JZ. 2002. Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiology 130:639-648
    14. Kim S.Y., Chung H.J., Tomas T.L. 1997. Isolation of a novel class of bZIP transcription factors that interact with ABA-responsive and embryo-specification elements in the Dc3 promoter using a modified yeast one-hybrid system. Plant Journal 11:1237-1251
    15. Lee B.-H., Henderson D. A., Zhu J.-K. 2005. The Arabidopsis Cold-Responsive Transcriptome and Its Regulation by ICE1. The Plant Cell 17:3155-3175
    16. Liu Q., Kasuga M., Sakuma Y., Abe H., Miura S., Yamagichi-Shinozaki K. 1998. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391-1406
    17. Liu W.Y., Chiou S.J., Ko C.Y., Lin T.Y. 2011. Functional characterization of three ethylene response factor genes from Bupleurem kaoi indicates that BkERFs mediate resistance to Botrytis cinerea. Journal of Plant Physiology 168:375-381
    18. Meshi T., Iwabuchi M. 1995 Plant transcription factors. Plant Cell Physiology 36:1405-1420
    19. Miura K., Otha M., Nakazawa M., Ono M., Hasegawa P.M. 2011. ICE1 Ser403 is necessary for protein stabilization and regulation of cold signaling and tolerance. The Plant Journal 67:269-279
    20. Nakashima K., Ito Y., Yamaguchi-Shinozaki K. 2009. Transcriptional Regulatory Networks in Response to Abiotic Stresses in Arabidopsis and Grasses. Plant Physiology 149:88-95
    21. Novillo F., Alonso J.M., Ecker J.R., Salinas J. 2003. CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis. PNAS 101:3985-3990
    22. Novillo F., Medina J., Salinas J. 2007. Arabidopsis CBF1 and CBF3 have a different function than CBF2 in cold acclimation and define different gene classes in the CBF regulon. PNAS 104:21002-21007
    23. Novillo F., Medina J., Rodrı´guez-Franco M., Neuhaus G., Salinas J. 2012. Genetic analysis reveals a complex regulatory network modulating CBF gene expression and Arabidopsis response to abiotic stress. Journal of Experimental Botany 63:293-304
    24. Orvar B.L., Sangwan V., Omann F., Dhindsa R.S, 2000. Early steps in cold sensing by plant cells: the role of actin cytoskeleton and membrane fluidity. Plant Journal 23:785-794
    25. Park H. C., Kim M. L., Kang Y. H., Jeon J. M., Yoo J. H., Kim M. C., Park C. Y., Jeong J. C., Moon B. C., Lee J. H., Yoon H. W., Lee S. H., Chung W. S., Lim C. O., Lee S. Y., Hong J. C., Cho M. J. 2004. Pathogen- and NaCl-induced expression of the SCaM-4 promoter is mediated in part by a GT-1 box that interacts with a GT-1like transcription factor. Plant Physiology 135:2150-2161
    26. Liina R.,Lao N. T., Kavanagh T. A. 2011. Regulation of multiple aquaporin genes in Arabidopsis by a pair of recently duplicated DREB transcription factors. Planta 234:429-444
    27. Sakuma Y., Liu Q., Dubouzet J.G., Abe H., Shinozaki K., Yamaguchi-Shinozaki K. 2002. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochemical and Biophysical Research Communications 290:998-1009
    28. Shinozaki K., Yamaguchi-Shinozaki K., Seki M. 2003. Regulatory network of gene expression in the drought and cold stress responses. Current Opinion in Plant Biology 36:410-417
    29. Shinwari Z.K., Nakashima K., Miura S., Kasuga M., Seki M., Yamaguchi-Shinozaki K. 1998. An Arabidopsis gene family encoding DRE/CRT binding proteins involved in low-temperature-responsive gene expression. Biochemical and Biophysical Research Communications 250:161-170
    30. Stockinger E.J., Glimour S.J., Tomashow M.F. 1997 Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulator element that stimulates transcription in response to low temperature and water deficit. PNAS 94:1035-1040
    31. Svensson J.T., Crosatti C., Campoli C., Bassi R., Stanca M., Close T.J., Cattivelli L. 2006. Transcriptome analysis of cold acclimation in Barley Albina and Xantha mutants. Plant Physiology 141:257-270
    32. Volk G.M. 2010. Application of functional genomics and proteomics to plant cryopreservation. Curr Genomics 11:24-29
    33. Welling A., and Palva T. 2008 Involvement of CBF Transcription Factors in Winter Hardiness in Birch. Plant Physiology 147:1199-1211
    34. Yamaguchi-Shinozaki K., Shinozaki K. 1994. A novel cis-acting element in as Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6:251-264
    35. Yang W., Liu X.-D., Chi X.-J., Wu C.-A., Li Y.-Z., Song L.-L., Liu X.-M., Wang Y.-F., Wang F.-W., Zhang C., Liu Y., Zong J.-M., Li H.-Y. 2011. Dwarf apple MbDREB1 enhances plant tolerance to low temperature, drought, and salt stress via both ABA-dependent and ABA-independent pathways. Planta 233:219-229
    36. Zarka D. G., Vogel J.T., Cool D., Thomashow M. F. 2003. Cold induction of Arabidopsis CBF genes involves multiple ICE (inducer of CBF expression) promoter elements and a cold-regulatory circuit that is desensitized by low temperature Plant Physiology 133:910-918
    37. Zhu J.K., 2002. Salt and drought stress signal transduction in plants. Annual Review of Plant Biology 53: 247-273

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE