簡易檢索 / 詳目顯示

研究生: 阮孟容
Nguyen, Manh-Dung
論文名稱: 石墨化氮化碳(g-C3N4)複合材料用於可見光催化降解污染物的開發
Development of Graphitic Carbon Nitride (GCN) Composites for Photocatalytic Degradation of Pollutants under Visible-light Irradiation
指導教授: 董瑞安
Doong, Ruey-An
口試委員: 吳劍侯
Chien, Hou-Wu
蘇鎮芳
Su, Jenn-Fang
陳慶隆
Chen, Ching-Lung
林亮毅
Lin, Liang-Yi
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 230
中文關鍵詞: 光催化石墨氮化碳共摻雜MnO2結構 Z 型光催PMS
外文關鍵詞: photocatalyst, GCN, co-doping, MnO2, Z-scheme, PMS
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 基於半導體的光催化技術是一種有效解決方案解決全球能源短缺。石墨氮化碳 (g-C3N4) 基材料最近被用做廢水淨化的光催化劑。為了增加g-C3N4的載流子和電荷傳輸,故研究了修飾的進展和修飾的相關功能,例如應用於光催化性能的形態特徵、元素摻雜、缺陷工程和異質結構。近年來,共摻雜和基於g-C3N4的異質結構之材料受到很大的關注,摻雜已被廣泛應用於調節 g-C3N4 的催化活性,這可以改變其理化特性,例如電子遷移率和電導率。同時,異質結構 Z 型光催化劑改善了載流子分離,提高了光催化效率,顯著提升了太陽能利用和轉換性能,因此,本論文為設計和製備g-C3N4基光催化劑提供了可能的趨勢,可有效去除廢水中的有機污染物。首先,磷氟共摻雜的g-C3N4縮小了能隙,改善了電荷分離,縮短了擴散長度,從而提高了電導率和電子傳輸速率。因此,在不同環境條件下,CNPF 的四環素光降解率比原始 g-C3N4高了 4.2 至 11.7 倍。其次,將花瓣狀的MnO2 與 B、S 共摻雜 g-C3N4 (CNBS) 管雜化,設計出一種新型空心核殼 Z 型異質結構,促進光生載流子的分離,在最佳反應條件下(CNBS/MnO2 的劑量 = 0.5 g L-1,pH = 7 和時間 = 15 分鐘)表現出令人滿意的 99% DCF (20 mg L-1) 降解率,PMS 劑量 = 0.06 mM。綜上所述,本研究開發了一種新型環保型 g-C3N4基催化劑,具有低成本、高效率,可用於廢水處理中有機污染物的選擇性降解.


    One effective solution for addressing the global energy shortage is semiconductor-based photocatalytic technology. Graphitic carbon nitride (GCN)-based materials have recently been used as photocatalysts for wastewater decontamination. To increase the carrier and charge transport perceptions of GCN, the modification advancements and related functions of the modification were approached, such as morphological characteristics, elemental dopants, deficit engineering, and heterojunction, which were applied in photocatalytic performance. Recently, co-doping and the construction of GCN-based heterostructures have been hot topics recently. Doping has been widely utilized as an efficient method to regulate the catalytic activity of GCN, which could change its physiochemical properties, such as electron mobility and conductivity. Meanwhile, heterojunction Z-scheme photocatalysts enhanced charge carrier separation for increased photocatalytic effectiveness, boosting solar energy utilization and conversion performance impressively. Therefore, this thesis provides the possible tendency in designing and fabricating GCN-based photocatalysts, which effectively eliminate organic contaminants from wastewater. Firstly, phosphorous and fluorine co-doped GCN narrowed the band gap, increases the electric conductivity and electron transfer rate by reducing the diffusion length, boosting the charge separation. As a result, the CNPF shows a tetracycline photodegradation rate 4.2-11.7 times greater than that of pure GCN all over a range of environmental conditions. Secondly, flower-like MnO2 is hybridized with B, S co-doped GCN (CNBS) tube design a novel hollow core-shell Z-scheme heterojunction, promoting photon-generated carrier separation. Under the optimum reaction condition (dosage of CNBS/MnO2 = 0.5 g L−1, pH = 7 and time = 15 min) exhibited satisfactory 99% removal photodegradation of DCF (20 mg L-1) with PMS dosage =0.06 mM. To sum up, our research developed a unique low-cost and highly effective GCN bases-catalyst for the various degradation of organic pollutants in wastewater treatment

    Contents ABSTRACT iii OUTLINE v LIST OF TABLES ix LIST OF FIGURES xi ABBREVIATIONS, UNITS, AND SYMBOLS xvii Chapter 1: Introduction 1 1.1. Motivation 1 1.2. Overviews of PPCPs 5 1.2.1. Classification of PPCPs 5 1.2.2. Environmental transport routes of PPCPs. 7 1.3. Advanced oxidation process in PPCPs removal 15 1.4. Overviews of photocatalyst 23 1.4.1. Solar energy utilization 23 1.4.2. Mechanism of Photocatalysis 25 1.4.3. Heterostructure Photocatalysts 27 1.5. Aim and objectives 31 1.6. Thesis outline 35 . Chapter 2: Overview of photocatalysts and strategies 36 2.1. Graphitic carbon nitride (GCN) 37 2.1.1. Structure of GCN 37 2.1.2. Electronic properties of GCN 40 2.1.3. Applications of GCN 41 2.2. Synthesis strategies 45 2.2.1. Bottom-up approaches. 45 2.2.2. Top-down approaches. 49 2.2.3. Modification approaches 52 2.2.4. Strategies for Engineering GCN 59 2.3. Functional modification 59 2.3.1. Defects 59 2.3.2. Heterojunction construction with GCN 71 2.3.3. Peroxymonosulfate (PMS) 78 2.4. Manganese dioxide (MnO2) 88 2.4.1. Structure of Manganese oxides 89 2.4.2. Synthesis of MnO2 and its composites 97 Chapter 3: Material and Methodology 102 3.1. Reagent and chemical 102 3.2. Photocatalyst preparation 102 3.2.1. Synthesis of F, P-codoped GCN (CNPF) 102 3.2.2. Synthesis of hollow B, S co-doped GCN (CNBS) 103 3.2.3. Synthesis CNBS@MnO2 nanocomposites 103 3.3. Characterization of photocatalyst 104 3.4. Photocatalytic degradation of phototocalyst 105 3.4.1. Photocatalytic activity of CNPF toward TC degradation 105 3.4.2. Photodegradation of DCF by CNBS@MnO2 105 3.5. Toxicity assay 106 Chapter 4: Results and discussion 108 4.1. Supramolecular self-assembly of F, P-codoped tubular graphitic carbon nitride with enhanced visible-light-driven photocatalytic activity for tetracycline degradation 108 4.1.1. Characterization of CNPF-x photocatalysts 108 4.1.2. Optical property and band structure of CNPF-x 117 4.1.3. Photocatalytic degradation of TC over CNPF-x 122 4.1.4. Effect of environmental parameters on TC photodegradation 124 4.1.5. Reusability and possible mechanism 130 4.1.6. Conclusions 136 4.2. Z-scheme S, B co-doped GCN nanotube@MnO2 heterojunction with visible-light-responsive for enhanced photodegradation of diclofenac by peroxymonosulfate activation 138 4.2.1. Morphology and microstructure of CNBS@MnO2 photocatalysts 138 4.2.2. Optical and electrochemical properties 144 4.2.3. Photocatalytic activity of CNBS@MnO2 toward DCF degradation 147 4.2.4. Identification of reactive oxidation species 160 4.2.5. Degradation pathway 171 4.2.6. Conclusions 173 Chapter 5: Conclusions and future scope of the work 174 5.1. Conclusions 174 5.2. Future scope of the work 176 List of publications 180 References 182

    [1] P.J. Alvarez, C.K. Chan, M. Elimelech, N.J. Halas, D. Villagrán, Emerging opportunities for nanotechnology to enhance water security, Nat. Nanotechnol. 13 (2018) 634-641, https://doi.org/10.1038/s41565-018-0203-2.
    [2] A. Priya, L. Gnanasekaran, S. Rajendran, J. Qin, Y. Vasseghian, Occurrences and removal of pharmaceutical and personal care products from aquatic systems using advanced treatment-A review, Environ. Res. 204 (2022) 112298, https://doi.org/10.1016/j.envres.2021.112298.
    [3] M. Humayun, C. Wang, W. Luo, Recent progress in the synthesis and applications of composite photocatalysts: a critical review, Small Methods. 6 (2022) 2101395. https://doi.org/10.1002/smtd.202101395.
    [4] S. Keerthanan, C. Jayasinghe, J.K. Biswas, M. Vithanage, Pharmaceutical and Personal Care Products (PPCPs) in the environment: Plant uptake, translocation, bioaccumulation, and human health risks, Critical Reviews in Environmental Science and Technology. 51 (2021) 1221-1258, https://doi.org/10.1080/10643389.2020.1753634.
    [5] X. Zhu, M. He, Y. Sun, Z. Xu, Z. Wan, D. Hou, D.S. Alessi, D.C. Tsang, Insights into the adsorption of pharmaceuticals and personal care products (PPCPs) on biochar and activated carbon with the aid of machine learning, J. Hazard. Mater.. 423 (2022) 127060, https://doi.org/10.1016/j.jhazmat.2021.127060.
    [6] D. Zhang, Y. Li, Y. Li, S. Zhan, Towards single‐atom photocatalysts for future carbon‐neutral application, SmartMat. (2022) https://doi.org/10.1002/smm2.1095.
    [7] M. Mezzelani, S. Gorbi, F. Regoli, Pharmaceuticals in the aquatic environments: evidence of emerged threat and future challenges for marine organisms, Mar. Environ. Res. 140 (2018) 41-60, https://doi.org/10.1016/j.marenvres.2018.05.001.
    [8] M. Mezzelani, S. Gorbi, F.J.M.e.r. Regoli, Pharmaceuticals in the aquatic environments: evidence of emerged threat and future challenges for marine organisms, 140 (2018) 41-60.
    [9] M. Mezzelani, S. Gorbi, F.J.M.e.r. Regoli, Pharmaceuticals in the aquatic environments: evidence of emerged threat and future challenges for marine organisms, Mar. Environ. Res. 140 (2018) 41-60, https://doi.org/10.1016/j.marenvres.2018.05.001.
    [10] A.J. Ebele, M.A.-E. Abdallah, S.J.E.c. Harrad, Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment, Emerg. Contam. 3 (2017) 1-16, https://doi.org/10.1016/j.emcon.2016.12.004.
    [11] J. Li, L. Yang, B. Lai, C. Liu, Y. He, G. Yao, N.J.C.E.J. Li, Recent progress on heterogeneous Fe-based materials induced persulfate activation for organics removal, 414 (2021) 128674.
    [12] J. Li, L. Yang, B. Lai, C. Liu, Y. He, G. Yao, N. Li, Recent progress on heterogeneous Fe-based materials induced persulfate activation for organics removal, Chem. Eng. J. 414 (2021) 128674, https://doi.org/10.1016/j.jhazmat.2021.127060.
    [13] Y. Yang, Y.S. Ok, K.-H. Kim, E.E. Kwon, Y.F.J.S.o.t.T.E. Tsang, Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: A review, 596 (2017) 303-320. https://doi.org/10.1016/j.scitotenv.2017.04.102
    [14] C.F. Couto, L.C. Lange, M.C. Amaral, Occurrence, fate and removal of pharmaceutically active compounds (PhACs) in water and wastewater treatment plants—A review, J. Water Process. Eng. 32 (2019) 100927, https://doi.org/10.1016/j.jwpe.2019.100927.
    [15] A. Priya, L. Gnanasekaran, S. Rajendran, J. Qin, Y.J.E.R. Vasseghian, Occurrences and removal of pharmaceutical and personal care products from aquatic systems using advanced treatment-A review, 204 (2022) 112298. https://doi.org/10.1016/j.envres.2021.112298
    [16] J. Wang, S.J.J.o.e.m. Wang, Removal of pharmaceuticals and personal care products (PPCPs) from wastewater: a review, 182 (2016) 620-640. https://doi.org/10.1016/j.jenvman.2016.07.049
    [17] B. Ren, X. Shi, X. Jin, X.C. Wang, P.J.C.E.J. Jin, Comprehensive evaluation of pharmaceuticals and personal care products (PPCPs) in urban sewers: Degradation, intermediate products and environmental risk, 404 (2021) 127024. https://doi.org/10.1016/j.cej.2020.127024
    [18] X. Zhu, M. He, Y. Sun, Z. Xu, Z. Wan, D. Hou, D.S. Alessi, D.C.J.J.o.H.M. Tsang, Insights into the adsorption of pharmaceuticals and personal care products (PPCPs) on biochar and activated carbon with the aid of machine learning, 423 (2022) 127060. https://doi.org/10.1016/j.jhazmat.2021.127060
    [19] R.Y. Krishnan, S. Manikandan, R. Subbaiya, M. Biruntha, M. Govarthanan, N.J.E.T. Karmegam, Innovation, Removal of emerging micropollutants originating from pharmaceuticals and personal care products (PPCPs) in water and wastewater by advanced oxidation processes: A review, 23 (2021) 101757. https://doi.org/10.1016/j.eti.2021.101757
    [20] J. Wang, S. Wang, Removal of pharmaceuticals and personal care products (PPCPs) from wastewater: a review, J. Environ. Manage. 182 (2016) 620-640, https://doi.org/10.1016/j.jenvman.2016.07.049.
    [21] Z. Wang, X.-H. Zhang, Y. Huang, H. Wang, Comprehensive evaluation of pharmaceuticals and personal care products (PPCPs) in typical highly urbanized regions across China, Environ. Pollut. 204 (2015) 223-232, https://doi.org/10.1016/j.envpol.2015.04.021.
    [22] A.S. Oberoi, Y. Jia, H. Zhang, S.K. Khanal, H. Lu, Insights into the fate and removal of antibiotics in engineered biological treatment systems: a critical review, Environ. Sci. Technol. . 53 (2019) 7234-7264, https://doi.org/10.1021/acs.est.9b01131.
    [23] A. Majumder, B. Gupta, A.K. Gupta, Pharmaceutically active compounds in aqueous environment: A status, toxicity and insights of remediation, Environ. Res. 176 (2019) 108542, https://doi.org/10.1016/j.envres.2019.108542.
    [24] P. Kovalakova, L. Cizmas, T.J. McDonald, B. Marsalek, M. Feng, V.K. Sharma, Occurrence and toxicity of antibiotics in the aquatic environment: A review, Chemosphere. 251 (2020) 126351, https://doi.org/10.1016/j.chemosphere.2020.126351.
    [25] M. Kumar, S. Jaiswal, K.K. Sodhi, P. Shree, D.K. Singh, P.K. Agrawal, P. Shukla, Antibiotics bioremediation: perspectives on its ecotoxicity and resistance, Environ. Int. 124 (2019) 448-461, https://doi.org/10.1016/j.envint.2018.12.065.
    [26] J. Wang, R. Zhuan, L. Chu, The occurrence, distribution and degradation of antibiotics by ionizing radiation: an overview, Sci. Total Environ. 646 (2019) 1385-1397, https://doi.org/10.1016/j.scitotenv.2018.07.415.
    [27] R. Anjali, S.J.J.o.e.m. Shanthakumar, Insights on the current status of occurrence and removal of antibiotics in wastewater by advanced oxidation processes, 246 (2019) 51-62. https://doi.org/10.1016/j.jenvman.2019.05.090
    [28] M.J. Calvete, G. Piccirillo, C.S. Vinagreiro, M.M. Pereira, Hybrid materials for heterogeneous photocatalytic degradation of antibiotics, Coord. Chem. Rev. 395 (2019) 63-85, https://doi.org/110.1016/j.ccr.2019.05.004.
    [29] Y. Mehdi, M.-P. Létourneau-Montminy, M.-L. Gaucher, Y. Chorfi, G. Suresh, T. Rouissi, S.K. Brar, C. Côté, A.A. Ramirez, S. Godbout, Use of antibiotics in broiler production: Global impacts and alternatives, Anim Nutr. 4 (2018) 170-178, https://doi.org/10.1016/j.aninu.2018.03.002.
    [30] R. Anjali, S. Shanthakumar, Insights on the current status of occurrence and removal of antibiotics in wastewater by advanced oxidation processes, J. Environ. Manage. 246 (2019) 51-62, https://doi.org/10.1016/j.jenvman.2019.05.090.
    [31] N.H. Tran, M. Reinhard, K.Y.-H. Gin, Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions-a review, Water Res. 133 (2018) 182-207, https://doi.org/10.1016/j.watres.2017.12.029.
    [32] M. Patel, R. Kumar, K. Kishor, T. Mlsna, C.U. Pittman Jr, D. Mohan, Pharmaceuticals of emerging concern in aquatic systems: chemistry, occurrence, effects, and removal methods, Chem. Rev. 119 (2019) 3510-3673, https://doi.org/10.1021/acs.chemrev.8b00299.
    [33] R. Yin, W. Guo, H. Wang, J. Du, Q. Wu, J.-S. Chang, N. Ren, Singlet oxygen-dominated peroxydisulfate activation by sludge-derived biochar for sulfamethoxazole degradation through a nonradical oxidation pathway: Performance and mechanism, Chem. Eng. J. 357 (2019) 589-599, https://doi.org/10.1016/j.cej.2018.09.184.
    [34] C.-H. Shen, X.-J. Wen, Z.-H. Fei, Z.-T. Liu, Q.-M. Mu, Visible-light-driven activation of peroxymonosulfate for accelerating ciprofloxacin degradation using CeO2/Co3O4 pn heterojunction photocatalysts, Chem. Eng. J. 391 (2020) 123612, https://doi.org/10.1016/j.cej.2019.123612.
    [35] S. Li, C. Wang, M. Cai, F. Yang, Y. Liu, J. Chen, P. Zhang, X. Li, X. Chen, Facile fabrication of TaON/Bi2MoO6 core–shell S-scheme heterojunction nanofibers for boosting visible-light catalytic levofloxacin degradation and Cr (VI) reduction, Chem. Eng. J. 428 (2022) 131158, https://doi.org/10.1016/j.cej.2021.131158.
    [36] Y. Zhou, Y. Gao, J. Jiang, Y.-M. Shen, S.-Y. Pang, Y. Song, Q. Guo, A comparison study of levofloxacin degradation by peroxymonosulfate and permanganate: Kinetics, products and effect of quinone group, J. Hazard. Mater. 403 (2021) 123834, https://doi.org/10.1016/j.jhazmat.2020.123834.
    [37] X.-J. Wen, C.-G. Niu, L. Zhang, C. Liang, G.-M. Zeng, A novel Ag2O/CeO2 heterojunction photocatalysts for photocatalytic degradation of enrofloxacin: possible degradation pathways, mineralization activity and an in depth mechanism insight, Appl. Catal. B: Environ. 221 (2018) 701-714, https://doi.org/10.1016/j.apcatb.2017.09.060.
    [38] L. Xu, H. Zhang, P. Xiong, Q. Zhu, C. Liao, G. Jiang, Occurrence, fate, and risk assessment of typical tetracycline antibiotics in the aquatic environment: A review, Sci. Total Environ. 753 (2021) 141975, https://doi.org/10.1016/j.scitotenv.2020.141975.
    [39] S. Wu, X. Yu, J. Zhang, Y. Zhang, Y. Zhu, M. Zhu, Construction of BiOCl/CuBi2O4 S-scheme heterojunction with oxygen vacancy for enhanced photocatalytic diclofenac degradation and nitric oxide removal, Chem. Eng. J. 411 (2021) 128555, https://doi.org/10.1016/j.cej.2021.128555.
    [40] I. Lupan, R. Carpa, A. Oltean, B.S. Kelemen, O. Popescu, Release of Antibiotic Resistant Bacteria by a Waste Treatment Plant from Romania, Microbes and environments. 32 (2017) 219-225. https://doi.org/10.1264/jsme2.me17016
    [41] F. Polesel, H.R. Andersen, S. Trapp, B.G. Plósz, Removal of Antibiotics in Biological Wastewater Treatment Systems A Critical Assessment Using the Activated Sludge Modeling Framework for Xenobiotics (ASM-X), Environmental science & technology. 50 (2016) 10316-10334. https://doi.org/10.1021/acs.est.6b01899
    [42] F. Yu, Y. Li, S. Han, J. Ma, Adsorptive removal of antibiotics from aqueous solution using carbon materials, Chemosphere. 153 (2016) 365-385. https://doi.org/10.1016/j.chemosphere.2016.03.083
    [43] P.R. Rout, T.C. Zhang, P. Bhunia, R.Y. Surampalli, Treatment technologies for emerging contaminants in wastewater treatment plants: A review, Sci. Total Environ. 753 (2021) 141990, https://doi.org/10.1016/j.scitotenv.2020.141990.
    [44] N. Armaroli, V.J.A.C.I.E. Balzani, The future of energy supply: challenges and opportunities, 46 (2007) 52-66. https://doi.org/10.1002/anie.200602373
    [45] J. Wang, R.J.S.o.t.T.E. Zhuan, Degradation of antibiotics by advanced oxidation processes: An overview, 701 (2020) 135023. https://doi.org/10.1016/j.scitotenv.2019.135023
    [46] Y. Zhao, S. Zhang, R. Shi, G.I. Waterhouse, J. Tang, T.J.M.T. Zhang, Two-dimensional photocatalyst design: A critical review of recent experimental and computational advances, 34 (2020) 78-91. https://doi.org/10.1016/j.mattod.2019.10.022
    [47] S. Keerthanan, C. Jayasinghe, J.K. Biswas, M.J.C.R.i.E.S. Vithanage, Technology, Pharmaceutical and Personal Care Products (PPCPs) in the environment: Plant uptake, translocation, bioaccumulation, and human health risks, 51 (2021) 1221-1258. https://doi.org/10.1080/10643389.2020.1753634
    [48] A. Dogan, J. Płotka-Wasylka, D. Kempińska-Kupczyk, J. Namieśnik, A. Kot-Wasik, Detection, identification and determination of chiral pharmaceutical residues in wastewater: Problems and challenges, TrAC - Trends Anal. Chem. 122 (2020) 115710, https://doi.org/10.1016/j.trac.2019.115710.
    [49] C. Ingrao, S. Failla, C. Arcidiacono, A comprehensive review of environmental and operational issues of constructed wetland systems, Curr. Opin. Environ. Sci. Health. 13 (2020) 35-45, https://doi.org/10.1016/j.coesh.2019.10.007.
    [50] Z.N. Garba, W. Zhou, I. Lawan, W. Xiao, M. Zhang, L. Wang, L. Chen, Z. Yuan, An overview of chlorophenols as contaminants and their removal from wastewater by adsorption: A review, J. Environ. Manage. 241 (2019) 59-75, https://doi.org/10.1016/j.jenvman.2019.04.004.
    [51] H.B. Quesada, A.T.A. Baptista, L.F. Cusioli, D. Seibert, C. de Oliveira Bezerra, R. Bergamasco, Surface water pollution by pharmaceuticals and an alternative of removal by low-cost adsorbents: A review, Chemosphere. 222 (2019) 766-780, https://doi.org/10.1016/j.chemosphere.2019.02.009.
    [52] A.A. Siyal, M.R. Shamsuddin, A. Low, N.E.J.J.o.e.m. Rabat, A review on recent developments in the adsorption of surfactants from wastewater, J. Environ. Manage. . 254 (2020) 109797, https://doi.org/10.1016/j.jenvman.2019.109797.
    [53] P. Song, Z. Yang, G. Zeng, X. Yang, H. Xu, L. Wang, R. Xu, W. Xiong, K. Ahmad, Electrocoagulation treatment of arsenic in wastewaters: a comprehensive review, Chem. Eng. J. 317 (2017) 707-725, https://doi.org/10.1016/j.cej.2017.02.086.
    [54] C.F. Couto, L.C. Lange, M.C.S. Amaral, A critical review on membrane separation processes applied to remove pharmaceutically active compounds from water and wastewater, J. Water Process. Eng. 26 (2018) 156-175, https://doi.org/10.1016/j.jwpe.2018.10.010.
    [55] Y. Gu, J. Huang, G. Zeng, L. Shi, Y. Shi, K.J.B.T. Yi, Fate of pharmaceuticals during membrane bioreactor treatment: Status and perspectives, Bioresour. Technol. 268 (2018) 733-748, https://doi.org/10.1016/j.biortech.2018.08.029.
    [56] X. Tan, I. Acquah, H. Liu, W. Li, S. Tan, A critical review on saline wastewater treatment by membrane bioreactor (MBR) from a microbial perspective, Chemosphere. 220 (2019) 1150-1162, https://doi.org/10.1016/j.chemosphere.2019.01.027.
    [57] I. Michael-Kordatou, P. Karaolia, D.J.W.r. Fatta-Kassinos, The role of operating parameters and oxidative damage mechanisms of advanced chemical oxidation processes in the combat against antibiotic-resistant bacteria and resistance genes present in urban wastewater, Water Res. 129 (2018) 208-230, https://doi.org/10.1016/j.watres.2017.10.007.
    [58] J.K. Nayak, U.K. Ghosh, Post treatment of microalgae treated pharmaceutical wastewater in photosynthetic microbial fuel cell (PMFC) and biodiesel production, Biomass Bioenergy. 131 (2019) 105415, https://doi.org/10.1016/j.biombioe.2019.105415.
    [59] Z.Z. Ismail, A.A. Habeeb, Experimental and modeling study of simultaneous power generation and pharmaceutical wastewater treatment in microbial fuel cell based on mobilized biofilm bearers, Renew. Energ. 101 (2017) 1256-1265, https://doi.org/10.1016/j.renene.2016.10.008.
    [60] C. Xia, D. Zhang, W. Pedrycz, Y. Zhu, Y. Guo, Models for microbial fuel cells: a critical review, J. Power Sources. . 373 (2018) 119-131, https://doi.org/10.1016/j.jpowsour.2017.11.001.
    [61] H. Xu, X. Quan, Z. Xiao, L. Chen, Effect of anodes decoration with metal and metal oxides nanoparticles on pharmaceutically active compounds removal and power generation in microbial fuel cells, Chem. Eng. J. 335 (2018) 539-547, https://doi.org/10.1016/j.cej.2017.10.159.
    [62] J. Wang, H. Chen, Catalytic ozonation for water and wastewater treatment: recent advances and perspective, Sci. Total Environ. 704 (2020) 135249, https://doi.org/10.1016/j.scitotenv.2019.135249.
    [63] J. Gomes, R. Costa, R.M. Quinta-Ferreira, R. Martins, Application of ozonation for pharmaceuticals and personal care products removal from water, Sci. Total Environ. 586 (2017) 265-283, https://doi.org/10.1016/j.scitotenv.2017.01.216.
    [64] M. Ahmed, B. Hameed, Insights into the isotherm and kinetic models for the coadsorption of pharmaceuticals in the absence and presence of metal ions: a review, J. Environ. Manage. 252 (2019) 109617, https://doi.org/10.1016/j.jenvman.2019.109617.
    [65] V. Krstić, T. Urošević, B. Pešovski, A review on adsorbents for treatment of water and wastewaters containing copper ions, Chem. Eng. J. 192 (2018) 273-287, https://doi.org/10.1016/j.ces.2018.07.022.
    [66] S. Zhu, D.J.A.E.M. Wang, Photocatalysis: basic principles, diverse forms of implementations and emerging scientific opportunities, 7 (2017) 1700841.
    [67] L.V. Bora, R.K.J.R. Mewada, S.E. Reviews, Visible/solar light active photocatalysts for organic effluent treatment: Fundamentals, mechanisms and parametric review, Renew. Sust. Energ. Rev. 76 (2017) 1393-1421, https://doi.org/10.1016/j.rser.2017.01.130.
    [68] S. Zhu, D. Wang, Photocatalysis: basic principles, diverse forms of implementations and emerging scientific opportunities, Adv. Energy Mater. 7 (2017) 1700841, https://doi.org/10.1002/aenm.201700841.
    [69] Y. Yamazaki, H. Takeda, O. Ishitani, Photocatalytic reduction of CO2 using metal complexes, J. Photochem. Photobiol. 25 (2015) 106-137, https://doi.org/10.1016/j.jphotochemrev.2015.09.001.
    [70] M. Humayun, C. Wang, W. Luo, Recent progress in the synthesis and applications of composite photocatalysts: a critical review, small methods 6(2022) 2101395, https://doi.org/10.1002/smtd.202101395.
    [71] S.J. Moniz, S.A. Shevlin, D.J. Martin, Z.-X. Guo, J. Tang, Visible-light driven heterojunction photocatalysts for water splitting–a critical review, Energy Environ. Sci. 8 (2015) 731-759, https://doi.org/10.1039/C4EE03271C.
    [72] M. Humayun, C. Wang, W.J.S.M. Luo, Recent progress in the synthesis and applications of composite photocatalysts: a critical review, 6 (2022) 2101395. https://doi.org/10.1002/smtd.202101395
    [73] S.M. Zainab, M. Junaid, N. Xu, R.N.J.W.r. Malik, Antibiotics and antibiotic resistant genes (ARGs) in groundwater: A global review on dissemination, sources, interactions, environmental and human health risks, 187 (2020) 116455. https://doi.org/10.1016/j.watres.2020.116455
    [74] M.B. Ahmed, J.L. Zhou, H.H. Ngo, W. Guo, N.S. Thomaidis, J.J.J.o.h.m. Xu, Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: a critical review, 323 (2017) 274-298. https://doi.org/10.1016/j.jhazmat.2016.04.045
    [75] S. Esplugas, D.M. Bila, L.G.T. Krause, M.J.J.o.h.m. Dezotti, Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents, 149 (2007) 631-642. https://doi.org/10.1016/j.jhazmat.2007.07.073
    [76] J.-L. Liu, M.-H.J.E.i. Wong, Pharmaceuticals and personal care products (PPCPs): a review on environmental contamination in China, 59 (2013) 208-224. https://doi.org/10.1016/j.envint.2013.06.012
    [77] N. Liu, X. Jin, C. Feng, Z. Wang, F. Wu, A.C. Johnson, H. Xiao, H. Hollert, J.P.J.E.I. Giesy, Ecological risk assessment of fifty pharmaceuticals and personal care products (PPCPs) in Chinese surface waters: a proposed multiple-level system, 136 (2020) 105454. https://doi.org/10.1016/j.envint.2019.105454
    [78] K. Qi, S.-y. Liu, A. Zada, Graphitic carbon nitride, a polymer photocatalyst, J. Taiwan Inst. Chem. Eng. 109 (2020) 111-123, https://doi.org/10.1016/j.jtice.2020.02.012.
    [79] D. Masih, Y. Ma, S. Rohani, Graphitic C3N4 based noble-metal-free photocatalyst systems: a review, Appl. Catal. B: Environ. 206 (2017) 556-588, https://doi.org/10.1016/j.apcatb.2017.01.061.
    [80] W.K. Darkwah, Y. Ao, Mini review on the structure and properties (photocatalysis), and preparation techniques of graphitic carbon nitride nano-based particle, and its applications, Nanoscale Res. Lett. 13 (2018) 1-15, https://doi.org/10.1186/s11671-018-2702-3.
    [81] B. Zhu, J. Zhang, C. Jiang, B. Cheng, J. Yu, First principle investigation of halogen-doped monolayer g-C3N4 photocatalyst, Appl. Catal. B: Environ. 207 (2017) 27-34, https://doi.org/10.1016/j.apcatb.2017.02.020.
    [82] T. Tong, B. Zhu, C. Jiang, B. Cheng, J. Yu, Mechanistic insight into the enhanced photocatalytic activity of single-atom Pt, Pd or Au-embedded g-C3N4, Appl. Surf. Sci. 433 (2018) 1175-1183, https://doi.org/10.1016/j.apsusc.2017.10.120.
    [83] N.S.N. Hasnan, M.A. Mohamed, Z.A. Mohd Hir, Surface physicochemistry modification and structural nanoarchitectures of g‐C3N4 for wastewater remediation and solar fuel generation, Adv. Mater. Technol. 7 (2022) 2100993, https://doi.org/10.1002/admt.202100993.
    [84] J. Wen, J. Xie, X. Chen, X. Li, A review on g-C3N4-based photocatalysts, Appl. Surf. Sci. 391 (2017) 72-123, https://doi.org/10.1016/j.apsusc.2016.07.030.
    [85] A. Naseri, M. Samadi, A. Pourjavadi, A.Z. Moshfegh, S. Ramakrishna, Graphitic carbon nitride (gC3N4)-based photocatalysts for solar hydrogen generation: recent advances and future development directions, J. Mater. Chem. A . 5 (2017) 23406-23433, https://doi.org/10.1039/C7TA05131J.
    [86] A. Mishra, A. Mehta, S. Basu, N.P. Shetti, K.R. Reddy, T.M.J.C. Aminabhavi, Graphitic carbon nitride (g–C3N4)–based metal-free photocatalysts for water splitting: a review, 149 (2019) 693-721. https://doi.org/10.1016/j.carbon.2019.04.104
    [87] I.F. Teixeira, E.C. Barbosa, S.C.E. Tsang, P.H. Camargo, Carbon nitrides and metal nanoparticles: from controlled synthesis to design principles for improved photocatalysis, Chem. Soc. Rev. 47 (2018) 7783-7817, https://doi.org/10.1039/C8CS00479J.
    [88] A. Mishra, A. Mehta, S. Basu, N.P. Shetti, K.R. Reddy, T.M. Aminabhavi, Graphitic carbon nitride (g–C3N4)–based metal-free photocatalysts for water splitting: a review, Carbon. 149 (2019) 693-721, https://doi.org/10.1016/j.carbon.2019.04.104.
    [89] S. Wang, J. Zhang, B. Li, H. Sun, S. Wang, X.J.J.o.E.C.E. Duan, Morphology-dependent photocatalysis of graphitic carbon nitride for sustainable remediation of aqueous pollutants: A mini review, (2022) 107438. https://doi.org/10.1016/j.jece.2022.107438
    [90] C. Zhou, D. Huang, P. Xu, G. Zeng, J. Huang, T. Shi, C. Lai, C. Zhang, M. Cheng, Y. Lu, Efficient visible light driven degradation of sulfamethazine and tetracycline by salicylic acid modified polymeric carbon nitride via charge transfer, J. Chem. Eng. 370 (2019) 1077-1086, https://doi.org/10.1016/j.cej.2019.03.279.
    [91] H. Dong, X. Guo, C. Yang, Z. Ouyang, Synthesis of g-C3N4 by different precursors under burning explosion effect and its photocatalytic degradation for tylosin, Appl. Catal. B 230 (2018) 65-76, https://doi.org/10.1016/j.apcatb.2018.02.044.
    [92] C. Zhou, P. Xu, C. Lai, C. Zhang, G. Zeng, D. Huang, M. Cheng, L. Hu, W. Xiong, X. Wen, Rational design of graphic carbon nitride copolymers by molecular doping for visible-light-driven degradation of aqueous sulfamethazine and hydrogen evolution, J. Chem. Eng. 359 (2019) 186-196, https://doi.org/10.1016/j.cej.2018.11.140.
    [93] D. Hernández-Uresti, A. Vázquez, D. Sanchez-Martinez, S. Obregón, Performance of the polymeric g-C3N4 photocatalyst through the degradation of pharmaceutical pollutants under UV–vis irradiation, J. Photochem. Photobiol. 324 (2016) 47-52, https://doi.org/10.1016/j.jphotochem.2016.01.031.
    [94] X. Wang, Q. Liu, Q. Yang, Z. Zhang, X. Fang, Three-dimensional g-C3N4 aggregates of hollow bubbles with high photocatalytic degradation of tetracycline, Carbon. 136 (2018) 103-112, https://doi.org/10.1016/j.carbon.2018.04.059.
    [95] C. Tian, H. Zhao, J. Mei, S. Yang, Cost‐Efficient Graphitic Carbon Nitride as an Effective Photocatalyst for Antibiotic Degradation: An Insight into the Effects of Different Precursors and Coexisting Ions, and Photocatalytic Mechanism, Chem Asian J . 14 (2019) 162-169, https://doi.org/10.1002/asia.201801416.
    [96] M. Dou, J. Wang, B. Gao, C. Xu, F. Yang, Photocatalytic difference of amoxicillin and cefotaxime under visible light by mesoporous g-C3N4: mechanism, degradation pathway and DFT calculation, J. Chem. Eng. 383 (2020) 123134, https://doi.org/10.1016/j.cej.2019.123134.
    [97] D. Tang, Y. Chen, M. Yin, Q. Yang, Y. Zhou, L. Zhou, Supramolecular self-assembly production of porous carbon nitride nanosheets with excellent photocatalytic activity by a melamine derivative as doping molecule, Mater. Sci. Semicond. Process. 105 (2020) 104735, https://doi.org/10.1016/j.mssp.2019.104735.
    [98] C. Zhou, Z. Zeng, G. Zeng, D. Huang, R. Xiao, M. Cheng, C. Zhang, W. Xiong, C. Lai, Y.J.J.o.h.m. Yang, Visible-light-driven photocatalytic degradation of sulfamethazine by surface engineering of carbon nitride: Properties, degradation pathway and mechanisms, 380 (2019) 120815. https://doi.org/10.1016/j.jhazmat.2019.120815
    [99] C. Zhou, C. Lai, D. Huang, G. Zeng, C. Zhang, M. Cheng, L. Hu, J. Wan, W. Xiong, M. Wen, Highly porous carbon nitride by supramolecular preassembly of monomers for photocatalytic removal of sulfamethazine under visible light driven, Appl. Catal. B 220 (2018) 202-210, https://doi.org/10.1016/j.apcatb.2017.08.055.
    [100] C. Zhou, G. Zeng, D. Huang, Y. Luo, M. Cheng, Y. Liu, W. Xiong, Y. Yang, B. Song, W. Wang, Distorted polymeric carbon nitride via carriers transfer bridges with superior photocatalytic activity for organic pollutants oxidation and hydrogen production under visible light, J. Hazard. Mater. 386 (2020) 121947, https://doi.org/10.1016/j.jhazmat.2019.121947.
    [101] M. Sturini, A. Speltini, F. Maraschi, G. Vinci, A. Profumo, L. Pretali, A. Albini, L. Malavasi, g-C3N4-promoted degradation of ofloxacin antibiotic in natural waters under simulated sunlight, Environ. Sci. Pollut. Res. 24 (2017) 4153-4161, https://doi.org/10.1007/s11356-016-8156-1.
    [102] B. Liu, L. Ye, R. Wang, J. Yang, Y. Zhang, R. Guan, L. Tian, X. Chen, Phosphorus-doped graphitic carbon nitride nanotubes with amino-rich surface for efficient CO2 capture, enhanced photocatalytic activity, and product selectivity, ACS Appl. Mater. Interfaces. 10 (2018) 4001-4009, https://doi.org/10.1021/acsami.7b17503.
    [103] S. Zhang, S. Song, P. Gu, R. Ma, D. Wei, G. Zhao, T. Wen, R. Jehan, B. Hu, X. Wang, Visible-light-driven activation of persulfate over cyano and hydroxyl group co-modified mesoporous gC 3 N 4 for boosting bisphenol A degradation, J. Mater. Chem. 7 (2019) 5552-5560, https://doi.org/10.1039/C9TA00339H.
    [104] Y. Li, X. Li, H. Zhang, Q. Xiang, Porous graphitic carbon nitride for solar photocatalytic applications, Nanoscale Horiz. 5 (2020) 765-786, https://doi.org/10.1039/D0NH00046A.
    [105] J. Wang, C. Zhang, Y. Shen, Z. Zhou, J. Yu, Y. Li, W. Wei, S. Liu, Y. Zhang, Environment-friendly preparation of porous graphite-phase polymeric carbon nitride using calcium carbonate as templates, and enhanced photoelectrochemical activity, J. Mater. Chem. 3 (2015) 5126-5131, https://doi.org/10.1039/C4TA06778A J.
    [106] Y. Zhou, W. Lv, B. Zhu, F. Tong, J. Pan, J. Bai, Q. Zhou, H. Qin, Template-free one-step synthesis of g-C3N4 nanosheets with simultaneous porous network and S-doping for remarkable visible-light-driven hydrogen evolution, ACS Sustain. Chem. Eng. 7 (2019) 5801-5807, https://doi.org/10.1021/acssuschemeng.8b05374.
    [107] Q. Fan, J. Liu, Y. Yu, S. Zuo, A template induced method to synthesize nanoporous graphitic carbon nitride with enhanced photocatalytic activity under visible light, RSC advances. 4 (2014) 61877-61883, https://doi.org/10.1039/C4RA12033G.
    [108] H. Niu, W. Zhao, H. Lv, Y. Yang, Y. Cai, Accurate design of hollow/tubular porous g-C3N4 from melamine-cyanuric acid supramolecular prepared with mechanochemical method, J. Chem. Eng. 411 (2021) 128400, https://doi.org/10.1016/j.cej.2020.128400.
    [109] H.-J. Li, B.-W. Sun, L. Sui, D.-J. Qian, M. Chen, Preparation of water-dispersible porous gC3N4 with improved photocatalytic activity by chemical oxidation, Phys. Chem. Chem. Phys.. 17 (2015) 3309-3315, https://doi.org/10.1039/C4CP05020G
    [110] L. Shi, K. Chang, H. Zhang, X. Hai, L. Yang, T. Wang, J. Ye, Drastic enhancement of photocatalytic activities over phosphoric acid protonated porous g‐C3N4 nanosheets under visible light, Small. 12 (2016) 4431-4439, https://doi.org/10.1002/smll.201601668.
    [111] P. Niu, L. Zhang, G. Liu, H.M. Cheng, Graphene‐like carbon nitride nanosheets for improved photocatalytic activities, Adv. Funct. Mater. 22 (2012) 4763-4770, https://doi.org/10.1002/adfm.201200922.
    [112] J. Zhang, Y. Chen, X. Wang, Two-dimensional covalent carbon nitride nanosheets: synthesis, functionalization, and applications, Energy Environ. Sci. 8 (2015) 3092-3108, https://doi.org/10.1039/C5EE01895A.
    [113] Z. Zeng, K. Li, L. Yan, Y. Dai, H. Guo, M. Huo, Y. Guo, Fabrication of carbon nitride nanotubes by a simple water-induced morphological transformation process and their efficient visible-light photocatalytic activity, RSC Advances. 4 (2014) 59513-59518, https://doi.org/10.1039/C4RA12740D.
    [114] S. Guo, Z. Deng, M. Li, B. Jiang, C. Tian, Q. Pan, H. Fu, Phosphorus‐doped carbon nitride tubes with a layered micro‐nanostructure for enhanced visible‐light photocatalytic hydrogen evolution, Angew. Chem. Int. Ed. 128 (2016) 1862-1866, https://doi.org/10.1002/anie.201508505.
    [115] Z. Mo, H. Xu, Z. Chen, X. She, Y. Song, J. Wu, P. Yan, L. Xu, Y. Lei, S. Yuan, Self-assembled synthesis of defect-engineered graphitic carbon nitride nanotubes for efficient conversion of solar energy, Appl. Catal. 225 (2018) 154-161, https://doi.org/10.1016/j.apcatb.2017.11.041.
    [116] M. Wu, J. Zhang, B.-b. He, H.-w. Wang, R. Wang, Y.-s. Gong, In-situ construction of coral-like porous P-doped g-C3N4 tubes with hybrid 1D/2D architecture and high efficient photocatalytic hydrogen evolution, Appl. Catal. 241 (2019) 159-166, https://doi.org/10.1016/j.apcatb.2018.09.037.
    [117] W. Wang, Q. Niu, G. Zeng, C. Zhang, D. Huang, B. Shao, C. Zhou, Y. Yang, Y. Liu, H. Guo, 1D porous tubular g-C3N4 capture black phosphorus quantum dots as 1D/0D metal-free photocatalysts for oxytetracycline hydrochloride degradation and hexavalent chromium reduction, Appl. Catal. B: Environ. 273 (2020) 119051, https://doi.org/10.1016/j.apcatb.2020.119051.
    [118] Z. Zhao, W. Zhang, W. Liu, Y. Li, J. Ye, J. Liang, M. Tong, Single-atom silver induced amorphization of hollow tubular g-C3N4 for enhanced visible light-driven photocatalytic degradation of naproxen, Sci. Total Environ. 742 (2020) 140642, https://doi.org/10.1016/j.scitotenv.2020.140642.
    [119] Y. Zhang, M. Zhang, L. Tang, J. Wang, Y. Zhu, C. Feng, Y. Deng, W. He, Y. Hu, Platinum like cocatalysts tungsten carbide loaded hollow tubular g-C3N4 achieving effective space separation of carriers to degrade antibiotics, Chem. Eng. J. 391 (2020) 123487, https://doi.org/10.1016/j.cej.2019.123487.
    [120] Q. Liang, X. Liu, J. Wang, Y. Liu, Z. Liu, L. Tang, B. Shao, W. Zhang, S. Gong, M.J.J.o.H.M. Cheng, In-situ self-assembly construction of hollow tubular g-C3N4 isotype heterojunction for enhanced visible-light photocatalysis: experiments and theories, J. Hazard. Mater. 401 (2021) 123355, https://doi.org/10.1016/j.jhazmat.2020.123355.
    [121] T. Wu, Q. He, Z. Liu, B. Shao, Q. Liang, Y. Pan, J. Huang, Z. Peng, Y. Liu, C. Zhao, Tube wall delamination engineering induces photogenerated carrier separation to achieve photocatalytic performance improvement of tubular g-C3N4, J. Hazard. Mater. 424 (2022) 127177, https://doi.org/10.1016/j.jhazmat.2021.127177.
    [122] H. Zhang, W. Li, Y. Yan, W. Wang, Y. Ren, X. Li, Synthesis of highly porous g-C3N4 nanotubes for efficient photocatalytic degradation of sulfamethoxazole, Mater. Today Commun. 27 (2021) 102288, https://doi.org/10.1016/j.mtcomm.2021.102288.
    [123] C. Zhang, Y. Zhou, W. Wang, Y. Yang, C. Zhou, L. Wang, L. Lei, D. He, H. Luo, D.J.A.S.S. Huang, Formation of Mo2C/hollow tubular g-C3N4 hybrids with favorable charge transfer channels for excellent visible-light-photocatalytic performance, Appl. Surf. Sci. 527 (2020) 146757, https://doi.org/10.1016/j.apsusc.2020.146757.
    [124] Y. Zhang, J. Di, P. Ding, J. Zhao, K. Gu, X. Chen, C. Yan, S. Yin, J. Xia, H. Li, Ultrathin g-C3N4 with enriched surface carbon vacancies enables highly efficient photocatalytic nitrogen fixation, J. Colloid Interface Sci. 553 (2019) 530-539, https://doi.org/10.1016/j.jcis.2019.06.012.
    [125] Q. Liu, X. Wang, Q. Yang, Z. Zhang, X. Fang, Mesoporous g-C3N4 nanosheets prepared by calcining a novel supramolecular precursor for high-efficiency photocatalytic hydrogen evolution, Appl. Surf. Sci. 450 (2018) 46-56, https://doi.org/10.1016/j.apsusc.2018.04.175.
    [126] S. Zhao, Y. Zhang, Y. Zhou, Y. Wang, K. Qiu, C. Zhang, J. Fang, X. Sheng, Facile one-step synthesis of hollow mesoporous g-C3N4 spheres with ultrathin nanosheets for photoredox water splitting, Carbon. 126 (2018) 247-256, https://doi.org/10.1016/j.carbon.2017.10.033.
    [127] Y. Si, Z. Sun, L. Huang, M. Chen, L. Wu, A “ship-in-a-bottle” strategy to fabricate highly crystallized nanoporous graphitic C3N4 microspheres under pressurized conditions, J. Mater. Chem. 7 (2019) 8952-8959, https://doi.org/10.1039/C9TA00151D.
    [128] S. Wang, J. Zhang, B. Li, H. Sun, S. Wang, Engineered graphitic carbon nitride-based photocatalysts for visible-light-driven water splitting: a review, Energy Fuels. 35 (2021) 6504-6526, https://doi.org/10.1021/acs.energyfuels.1c00503.
    [129] W. Yan, L. Yan, C. Jing, Impact of doped metals on urea-derived g-C3N4 for photocatalytic degradation of antibiotics: structure, photoactivity and degradation mechanisms, Appl. Catal. B: Environ. 244 (2019) 475-485, https://doi.org/10.1016/j.apcatb.2018.11.069.
    [130] X. Zheng, Q. Zhang, T. Chen, Y. Wu, J. Hao, C. Tan, P. Chen, F. Wang, H. Liu, W. Lv, A novel synthetic carbon and oxygen doped stalactite-like g-C3N4 for broad-spectrum-driven indometacin degradation, J. Hazard. Mater. 386 (2020) 121961, https://doi.org/10.1016/j.jhazmat.2019.121961.
    [131] G. Li, B. Wang, J. Zhang, R. Wang, H. Liu, Er-doped g-C3N4 for photodegradation of tetracycline and tylosin: High photocatalytic activity and low leaching toxicity, J. Chem. Eng. 391 (2020) 123500, https://doi.org/10.1016/j.cej.2019.123500.
    [132] F. Guo, M. Li, H. Ren, X. Huang, K. Shu, W. Shi, C. Lu, Facile bottom-up preparation of Cl-doped porous g-C3N4 nanosheets for enhanced photocatalytic degradation of tetracycline under visible light, Sep. Purif. Technol. . 228 (2019) 115770, https://doi.org/10.1016/j.seppur.2019.115770.
    [133] T.S. Bui, P. Bansal, B.-K. Lee, T. Mahvelati-Shamsabadi, T. Soltani, Facile fabrication of novel Ba-doped g-C3N4 photocatalyst with remarkably enhanced photocatalytic activity towards tetracycline elimination under visible-light irradiation, Appl. Surf. Sci. 506 (2020) 144184, https://doi.org/10.1016/j.apsusc.2019.144184.
    [134] J. Lei, B. Chen, L. Zhou, N. Ding, Z. Cai, L. Wang, S.-I. In, C. Cui, Y. Zhou, Y. Liu, Efficient degradation of antibiotics in different water matrices through the photocatalysis of inverse opal Kg-C3N4: Insights into mechanism and assessment of antibacterial activity, Chem. Eng. J. 400 (2020) 125902, https://doi.org/10.1016/j.cej.2020.125902.
    [135] Y. Yang, H. Jin, C. Zhang, H. Gan, F. Yi, H.J.J.o.A. Wang, Compounds, Nitrogen-deficient modified P–Cl co-doped graphitic carbon nitride with enhanced photocatalytic performance, J. Alloys Compd. 821 (2020) 153439, https://doi.org/10.1016/j.jallcom.2019.153439.
    [136] L. Jing, D. Wang, M. He, Y. Xu, M. Xie, Y. Song, H. Xu, H. Li, An efficient broad spectrum-driven carbon and oxygen co-doped g-C3N4 for the photodegradation of endocrine disrupting: Mechanism, degradation pathway, DFT calculation and toluene selective oxidation, J. Hazard. Mater. 401 (2021) 123309, https://doi.org/10.1016/j.jhazmat.2020.123309.
    [137] F. Yi, H. Gan, H. Jin, W. Zhao, K. Zhang, H. Jin, H. Zhang, Y. Qian, J. Ma, Sulfur-and chlorine-co-doped g-C3N4 nanosheets with enhanced active species generation for boosting visible-light photodegradation activity, Sep. Purif. Technol. 233 (2020) 115997, https://doi.org/10.1016/j.seppur.2019.115997.
    [138] L. Jiang, X. Yuan, Y. Pan, J. Liang, G. Zeng, Z. Wu, H. Wang, Doping of graphitic carbon nitride for photocatalysis: a reveiw, Appl. Catal. B: Environ. 217 (2017) 388-406, https://doi.org/10.1016/j.apcatb.2017.06.003.
    [139] J. Barrio, M. Volokh, M. Shalom, Polymeric carbon nitrides and related metal-free materials for energy and environmental applications, J. Mater. Chem. A . 8 (2020) 11075-11116, https://doi.org/10.1039/D0TA01973A.
    [140] S. Patnaik, D.P. Sahoo, K. Parida, Recent advances in anion doped g-C3N4 photocatalysts: a review, Carbon
    172 (2021) 682-711, https://doi.org/10.1016/j.carbon.2020.10.073.
    [141] Y. Xing, X. Wang, S. Hao, X. Zhang, X. Wang, W. Ma, G. Zhao, X. Xu, Recent advances in the improvement of g-C3N4 based photocatalytic materials, Chinese J. Catal. 32 (2021) 13-20, https://doi.org/10.1016/j.cclet.2020.11.011.
    [142] Y. Zhang, J. Yuan, Y. Ding, B. Liu, L. Zhao, S. Zhang, Research progress on g–C3N4–based photocatalysts for organic pollutants degradation in wastewater: From exciton and carrier perspectives, Ceram. Int. 47 (2021) 31005-31030, https://doi.org/10.1016/j.ceramint.2021.08.063.
    [143] S. Wang, J. Zhang, B. Li, H. Sun, S.J.E. Wang, Fuels, Engineered graphitic carbon nitride-based photocatalysts for visible-light-driven water splitting: a review, 35 (2021) 6504-6526. https://doi.org/10.1021/acs.energyfuels.1c00503
    [144] Z. Hu, X. Cai, Z. Wang, S. Li, Z. Wang, X. Xie, Construction of carbon-doped supramolecule-based g-C3N4/TiO2 composites for removal of diclofenac and carbamazepine: A comparative study of operating parameters, mechanisms, degradation pathways, J. Hazard. Mater. 380 (2019) 120812, https://doi.org/10.1016/j.jhazmat.2019.120812.
    [145] Y. Li, M. Zhou, B. Cheng, Y. Shao, Recent advances in g-C3N4-based heterojunction photocatalysts, J. Mater. Sci. 56 (2020) 1-17, https://doi.org/10.1016/j.jmst.2020.04.028.
    [146] U. Ghosh, A. Pal, Graphitic carbon nitride based Z scheme photocatalysts: design considerations, synthesis, characterization and applications, J. Ind. Eng. Chem. 79 (2019) 383-408, https://doi.org/10.1016/j.jiec.2019.07.014.
    [147] A. Kumar, P. Raizada, P. Singh, R.V. Saini, A.K. Saini, A. Hosseini-Bandegharaei, Perspective and status of polymeric graphitic carbon nitride based Z-scheme photocatalytic systems for sustainable photocatalytic water purification, J. Chem. Eng. 391 (2020) 123496, https://doi.org/10.1016/j.cej.2019.123496.
    [148] Z. Jin, R. Hu, H. Wang, J. Hu, T. Ren, One-step impregnation method to prepare direct Z-scheme LaCoO3/g-C3N4 heterojunction photocatalysts for phenol degradation under visible light, Appl. Surf. Sci. 491 (2019) 432-442, https://doi.org/10.1016/j.apsusc.2019.06.143.
    [149] Z. Xie, Y. Feng, F. Wang, D. Chen, Q. Zhang, Y. Zeng, W. Lv, G. Liu, Construction of carbon dots modified MoO3/g-C3N4 Z-scheme photocatalyst with enhanced visible-light photocatalytic activity for the degradation of tetracycline, Appl. Catal. B . 229 (2018) 96-104, https://doi.org/10.1016/j.apcatb.2018.02.011.
    [150] W. Chen, Z.-C. He, G.-B. Huang, C.-L. Wu, W.-F. Chen, X.-H. Liu, Direct Z-scheme 2D/2D MnIn2S4/g-C3N4 architectures with highly efficient photocatalytic activities towards treatment of pharmaceutical wastewater and hydrogen evolution, J. Chem. Eng. 359 (2019) 244-253, https://doi.org/10.1016/j.cej.2018.11.141.
    [151] J. Du, Z. Xu, H. Li, H. Yang, S. Xu, J. Wang, Y. Jia, S. Ma, S. Zhan, Ag3PO4/g-C3N4 Z-scheme composites with enhanced visible-light-driven disinfection and organic pollutants degradation: uncovering the mechanism, Appl. Surf. Sci. 541 (2021) 148487, https://doi.org/10.1016/j.apsusc.2020.148487.
    [152] M.-M. Fang, J.-X. Shao, X.-G. Huang, J.-Y. Wang, W. Chen, Direct Z-scheme CdFe2O4/g-C3N4 hybrid photocatalysts for highly efficient ceftiofur sodium photodegradation, J. Mater. Sci. Technol. 56 (2020) 133-142, https://doi.org/10.1016/j.jmst.2020.01.054.
    [153] X. Wei, X. Wang, Y. Pu, A. Liu, C. Chen, W. Zou, Y. Zheng, J. Huang, Y. Zhang, Y. Yang, Facile ball-milling synthesis of CeO2/g-C3N4 Z-scheme heterojunction for synergistic adsorption and photodegradation of methylene blue: characteristics, kinetics, models, and mechanisms, J. Chem. Eng. 420 (2021) 127719, https://doi.org/10.1016/j.cej.2020.127719.
    [154] Z. Zhang, Z. Pan, Y. Guo, P.K. Wong, X. Zhou, R. Bai, In-situ growth of all-solid Z-scheme heterojunction photocatalyst of Bi7O9I3/g-C3N4 and high efficient degradation of antibiotic under visible light, Appl. Catal. B 261 (2020) 118212, https://doi.org/10.1016/j.apcatb.2019.118212.
    [155] Y. Zhou, M. Yu, H. Liang, J. Chen, L. Xu, J. Niu, Novel dual-effective Z-scheme heterojunction with g-C3N4, Ti3C2 MXene and black phosphorus for improving visible light-induced degradation of ciprofloxacin, Appl. Catal. B 291 (2021) 120105, https://doi.org/10.1016/j.apcatb.2021.120105.
    [156] D. Li, J. Huang, R. Li, P. Chen, D. Chen, M. Cai, H. Liu, Y. Feng, W. Lv, G. Liu, Synthesis of a carbon dots modified g-C3N4/SnO2 Z-scheme photocatalyst with superior photocatalytic activity for PPCPs degradation under visible light irradiation, J. Hazard. Mater. 401 (2021) 123257, https://doi.org/10.1016/j.jhazmat.2020.123257.
    [157] Y. Zhou, M. Yu, R. Zhan, X. Wang, G. Peng, J. Niu, Ti3C2 MXene-induced interface electron separation in g-C3N4/Ti3C2 MXene/MoSe2 Z-scheme heterojunction for enhancing visible light-irradiated enoxacin degradation, Sep. Purif. Technol. . 275 (2021) 119194, https://doi.org/10.1016/j.seppur.2021.119194.
    [158] Y. Lan, Z. Li, D. Li, W. Xie, G. Yan, S. Guo, Visible-light responsive Z-scheme Bi@ β-Bi2O3/g-C3N4 heterojunction for efficient photocatalytic degradation of 2, 3-dihydroxynaphthalene, J. Chem. Eng. 392 (2020) 123686, https://doi.org/10.1016/j.cej.2019.123686.
    [159] Q. Xie, W. He, S. Liu, C. Li, J. Zhang, P.K. Wong, Bifunctional S-scheme g-C3N4/Bi/BiVO4 hybrid photocatalysts toward artificial carbon cycling, Chinese J. Catal. 41 (2020) 140-153, https://doi.org/10.1016/S1872-2067(19)63481-9.
    [160] A. Khan, K. Zhang, A. Taraqqi A Kamal, X. Wang, Y. Chen, Y. Zhang, Degradation of antibiotics in aqueous media using manganese nanocatalyst-activated peroxymonosulfate, J. Colloid Interface Sci. 599 (2021) 805-818, https://doi.org/10.1016/j.jcis.2021.04.095.
    [161] T.B. Nguyen, C. Huang, R.A. Doong, M.H. Wang, C.W. Chen, C.D. Dong, Manipulating the morphology of 3D flower-like CoMn2O4 bimetallic catalyst for enhancing the activation of peroxymonosulfate toward the degradation of selected persistent pharmaceuticals in water, Chem. Eng. J. 436 (2022) 135244, https://doi.org/10.1016/j.cej.2022.135244.
    [162] S. Wang, Y. Liu, J. Wang, Iron and sulfur co-doped graphite carbon nitride (FeOy/Sg-C3N4) for activating peroxymonosulfate to enhance sulfamethoxazole degradation, J. Chem. Eng. 382 (2020) 122836, https://doi.org/10.1016/j.cej.2019.122836.
    [163] Y. Gao, Y. Zhu, L. Lyu, Q. Zeng, X. Xing, C. Hu, Electronic structure modulation of graphitic carbon nitride by oxygen doping for enhanced catalytic degradation of organic pollutants through peroxymonosulfate activation, Environ. Sci. Technol. . 52 (2018) 14371-14380, https://doi.org/10.1021/acs.est.8b05246.
    [164] D.T. Oyekunle, B. Wu, F. Luo, J. Ali, Z. Chen, Synergistic effects of Co and N doped on graphitic carbon as an in situ surface-bound radical generation for the rapid degradation of emerging contaminants, Chem. Eng. J. 421 (2021) 129818, https://doi.org/10.1016/j.cej.2021.129818.
    [165] H. Song, Z. Liu, Z. Guan, F. Yang, D. Xia, D. Li, Efficient persulfate non-radical activation of electron-rich copper active sites induced by oxygen on graphitic carbon nitride, Sci. Total Environ. 762 (2021) 143127, https://doi.org/10.1016/j.scitotenv.2020.143127.
    [166] Q. Li, H. Xu, G. Zhou, F. Cheng, M. Wang, J. Zhang, Y. Wang, X. Huang, Q. Wang, Sulfite activation by Fe-doped g-C3N4 for metronidazole degradation, Sep. Purif. Technol. 272 (2021) 118928, https://doi.org/10.1016/j.seppur.2021.118928.
    [167] X. Peng, J. Wu, Z. Zhao, X. Wang, H. Dai, L. Xu, G. Xu, Y. Jian, F. Hu, Activation of peroxymonosulfate by single-atom Fe-g-C3N4 catalysts for high efficiency degradation of tetracycline via nonradical pathways: Role of high-valent iron-oxo species and Fe–Nx sites, Chem. Eng. J. 427 (2022) 130803, https://doi.org/10.1016/j.cej.2021.130803.
    [168] Y. Dou, T. Yan, Z. Zhang, Q. Sun, L. Wang, Y.J.J.o.H.M. Li, Heterogeneous activation of peroxydisulfate by sulfur-doped g-C3N4 under visible-light irradiation: Implications for the degradation of spiramycin and an assessment of N-nitrosodimethylamine formation potential, 406 (2021) 124328.
    [169] C. Guan, J. Jiang, S. Pang, X. Chen, R.D. Webster, T.-T. Lim, Facile synthesis of pure g-C3N4 materials for peroxymonosulfate activation to degrade bisphenol A: Effects of precursors and annealing ambience on catalytic oxidation, Chem. Eng. J. 387 (2020) 123726, https://doi.org/10.1016/j.cej.2019.123726.
    [170] H. Song, Z. Guan, D. Xia, H. Xu, F. Yang, D. Li, X. Li, Copper-oxygen synergistic electronic reconstruction on g-C3N4 for efficient non-radical catalysis for peroxydisulfate and peroxymonosulfate, Sep. Purif. Technol. 257 (2021) 117957, https://doi.org/10.1016/j.seppur.2020.117957.
    [171] Y. Tian, X. Tian, W. Zeng, Y. Nie, C. Yang, C. Dai, Y. Li, L. Lu, Enhanced peroxymonosulfate decomposition into OH and 1O2 for sulfamethoxazole degradation over Se doped g-C3N4 due to induced exfoliation and N vacancies formation, Sep. Purif. Technol. 267 (2021) 118664, https://doi.org/10.1016/j.seppur.2021.118664.
    [172] Y. Tian, Q. Li, M. Zhang, Y. Nie, X. Tian, C. Yang, Y. Li, pH-dependent oxidation mechanisms over FeCu doped g-C3N4 for ofloxacin degradation via the efficient peroxymonosulfate activation, J. Clean. Prod. 315 (2021) 128207, https://doi.org/10.1016/j.jclepro.2021.128207.
    [173] Y. Feng, C. Liao, L. Kong, D. Wu, Y. Liu, P.-H. Lee, K. Shih, Facile synthesis of highly reactive and stable Fe-doped g-C3N4 composites for peroxymonosulfate activation: a novel nonradical oxidation process, J. Hazard. Mater. 354 (2018) 63-71, https://doi.org/10.1016/j.jhazmat.2018.04.056.
    [174] H. Li, C. Shan, B. Pan, Development of Fe-doped g-C3N4/graphite mediated peroxymonosulfate activation for degradation of aromatic pollutants via nonradical pathway, Sci. Total Environ. 675 (2019) 62-72, https://doi.org/10.1016/j.scitotenv.2019.04.171.
    [175] M. Xie, J. Tang, L. Kong, W. Lu, V. Natarajan, F. Zhu, J. Zhan, Cobalt doped g-C3N4 activation of peroxymonosulfate for monochlorophenols degradation, Chem. Eng. J. 360 (2019) 1213-1222, https://doi.org/10.1016/j.cej.2018.10.130.
    [176] L. Wang, X. Guo, Y. Chen, S. Ai, H.J.A.S.S. Ding, Cobalt-doped g-C3N4 as a heterogeneous catalyst for photo-assisted activation of peroxymonosulfate for the degradation of organic contaminants, 467 (2019) 954-962.
    [177] J. Fan, H. Qin, S.J.C.E.J. Jiang, Mn-doped g-C3N4 composite to activate peroxymonosulfate for acetaminophen degradation: the role of superoxide anion and singlet oxygen, Chem. Eng. J. 359 (2019) 723-732, https://doi.org/10.1016/j.cej.2018.11.165.
    [178] M. Xie, J. Tang, L. Kong, W. Lu, V. Natarajan, F. Zhu, J. Zhan, Cobalt doped g-C3N4 activation of peroxymonosulfate for monochlorophenols degradation, J. Chem. Eng. 360 (2019) 1213-1222, https://doi.org/10.1016/j.cej.2018.10.130.
    [179] Z. Wang, H. Wang, Z. Wang, D. Huang, H. Qin, Y. He, M. Chen, G. Zeng, P. Xu, Ferrocene modified g-C3N4 as a heterogeneous catalyst for photo-assisted activation of persulfate for the degradation of tetracycline, Colloids Surf. A Physicochem. Eng. Asp. 626 (2021) 127024, https://doi.org/10.1016/j.colsurfa.2021.127024.
    [180] L. Wang, X. Guo, Y. Chen, S. Ai, H. Ding, Cobalt-doped g-C3N4 as a heterogeneous catalyst for photo-assisted activation of peroxymonosulfate for the degradation of organic contaminants, Appl. Surf. Sci. 467 (2019) 954-962, https://doi.org/10.1016/j.apsusc.2018.10.262.
    [181] H. Li, C. Shan, B. Pan, Fe (III)-doped g-C3N4 mediated peroxymonosulfate activation for selective degradation of phenolic compounds via high-valent iron-oxo species, Environ. Sci. Technol. . 52 (2018) 2197-2205, https://doi.org/10.1021/acs.est.7b05563.
    [182] Y. Shi, J. Li, D. Wan, J. Huang, Y. Liu, Peroxymonosulfate-enhanced photocatalysis by carbonyl-modified g-C3N4 for effective degradation of the tetracycline hydrochloride, Sci. Total Environ. 749 (2020) 142313, https://doi.org/10.1016/j.scitotenv.2020.142313.
    [183] G. Wang, Y. Zhao, H. Ma, C. Zhang, X. Dong, X. Zhang, Enhanced peroxymonosulfate activation on dual active sites of N vacancy modified g-C3N4 under visible-light assistance and its selective removal of organic pollutants, Sci. Total Environ. 756 (2021) 144139, https://doi.org/10.1016/j.scitotenv.2020.144139.
    [184] Z. Cheng, L. Ling, J. Fang, C. Shang, Visible light-driven g-C3N4 peroxymonosulfate activation process for carbamazepine degradation: Activation mechanism and matrix effects, Chemosphere. 286 (2022) 131906, https://doi.org/10.1016/j.chemosphere.2021.131906.
    [185] W. Zhang, Z. Bian, X. Xin, L. Wang, X. Geng, H. Wang, Comparison of visible light driven H2O2 and peroxymonosulfate degradation of norfloxacin using Co/g-C3N4, Chemosphere. 262 (2021) 127955, https://doi.org/10.1016/j.chemosphere.2020.127955.
    [186] Y. Dou, T. Yan, Z. Zhang, Q. Sun, L. Wang, Y. Li, Heterogeneous activation of peroxydisulfate by sulfur-doped g-C3N4 under visible-light irradiation: Implications for the degradation of spiramycin and an assessment of N-nitrosodimethylamine formation potential, J. Hazard. Mater. 406 (2021) 124328, https://doi.org/10.1016/j.jhazmat.2020.124328.
    [187] D. Guo, Y. Wang, C. Chen, J. He, M. Zhu, J. Chen, C.J.C.E.J. Zhang, A multi-structural carbon nitride co-modified by Co, S to dramatically enhance mineralization of Bisphenol f in the photocatalysis-PMS oxidation coupling system, Chem. Eng. J. 422 (2021) 130035, https://doi.org/10.1016/j.cej.2021.130035.
    [188] X. Li, C. Garlisi, Q. Guan, S. Anwer, K. Al-Ali, G. Palmisano, L. Zheng, A review of material aspects in developing direct Z-scheme photocatalysts, Mater. Today. . 47 (2021) 75-107, https://doi.org/10.1016/j.mattod.2021.02.017.
    [189] V. Hasija, V.H. Nguyen, A. Kumar, P. Raizada, V. Krishnan, A.A.P. Khan, P. Singh, E. Lichtfouse, C. Wang, P.T. Huong, Advanced activation of persulfate by polymeric g-C3N4 based photocatalysts for environmental remediation: A review, J. Hazard. Mater. 413 (2021) 125324, https://doi.org/10.1016/j.jhazmat.2021.125324.
    [190] C. Jin, M. Wang, Z. Li, J. Kang, Y. Zhao, J. Han, Z. Wu, Two dimensional Co3O4/g-C3N4 Z-scheme heterojunction: Mechanism insight into enhanced peroxymonosulfate-mediated visible light photocatalytic performance, J. Chem. Eng. 398 (2020) 125569, https://doi.org/10.1016/j.cej.2020.125569.
    [191] C. Jin, J. Kang, Z. Li, M. Wang, Z. Wu, Y. Xie, Enhanced visible light photocatalytic degradation of tetracycline by MoS2/Ag/g-C3N4 Z-scheme composites with peroxymonosulfate, Appl. Surf. Sci. 514 (2020) 146076, https://doi.org/10.1016/j.apsusc.2020.146076.
    [192] J. Zhou, W. Liu, W. Cai, The synergistic effect of Ag/AgCl@ ZIF-8 modified g-C3N4 composite and peroxymonosulfate for the enhanced visible-light photocatalytic degradation of levofloxacin, Sci. Total Environ. 696 (2019) 133962, https://doi.org/10.1016/j.scitotenv.2019.133962.
    [193] X. Wang, W. Lu, Z. Zhao, H. Zhong, Z. Zhu, W. Chen, In situ stable growth of β-FeOOH on g-C3N4 for deep oxidation of emerging contaminants by photocatalytic activation of peroxymonosulfate under solar irradiation, J. Chem. Eng. 400 (2020) 125872, https://doi.org/10.1016/j.cej.2020.125872.
    [194] C. Liu, S. Mao, M. Shi, F. Wang, M. Xia, Q. Chen, X. Ju, Peroxymonosulfate activation through 2D/2D Z-scheme CoAl-LDH/BiOBr photocatalyst under visible light for ciprofloxacin degradation, J. Hazard. Mater. 420 (2021) 126613, https://doi.org/10.1016/j.jhazmat.2021.126613.
    [195] J. Jiang, X. Wang, C. Yue, S. Liu, Y. Lin, T. Xie, S. Dong, Efficient photoactivation of peroxymonosulfate by Z-scheme nitrogen-defect-rich NiCo2O4/g-C3N4 for rapid emerging pollutants degradation, J. Hazard. Mater. 414 (2021) 125528, https://doi.org/10.1016/j.jhazmat.2021.125528.
    [196] J. Zhang, X. Zhao, Y. Wang, Y. Gong, D. Cao, M. Qiao, Peroxymonosulfate-enhanced visible light photocatalytic degradation of bisphenol A by perylene imide-modified g-C3N4, Appl. Catal. B 237 (2018) 976-985, https://doi.org/10.1016/j.apcatb.2018.06.049.
    [197] X. Du, X. Bai, L. Xu, L. Yang, P. Jin, Visible-light activation of persulfate by TiO2/g-C3N4 photocatalyst toward efficient degradation of micropollutants, J. Chem. Eng. 384 (2020) 123245, https://doi.org/10.1016/j.cej.2019.123245.
    [198] A.H. Mady, M.L. Baynosa, D. Tuma, J.J. Shim, Heterogeneous activation of peroxymonosulfate by a novel magnetic 3D γ-MnO2@ ZnFe2O4/rGO nanohybrid as a robust catalyst for phenol degradation, Appl. Catal. B: Environ. 244 (2019) 946-956, https://doi.org/10.1016/j.apcatb.2018.11.086.
    [199] A. Eslami, M. Hashemi, F. Ghanbari, Degradation of 4-chlorophenol using catalyzed peroxymonosulfate with nano-MnO2/UV irradiation: Toxicity assessment and evaluation for industrial wastewater treatment, J. Clean. Prod. 195 (2018) 1389-1397, https://doi.org/10.1016/j.jclepro.2018.05.137.
    [200] T. Van Nguyen, N.M. Phan, K.J. Kim, N.N. Huy, N.T.D. Dung, Orange G degradation by heterogeneous peroxymonosulfate activation based on magnetic MnFe2O4/α-MnO2 hybrid, Res. J. Environ. Sci. 124 (2023) 379-396, https://doi.org/10.1016/j.jes.2021.10.008.
    [201] A. Jawad, K. Zhan, H. Wang, A. Shahzad, Z. Zeng, J. Wang, X. Zhou, H. Ullah, Z. Chen, Z. Chen, Tuning of persulfate activation from a free radical to a nonradical pathway through the incorporation of non-redox magnesium oxide, Environ. Sci. Technol. 54 (2020) 2476-2488, https://doi.org/10.1021/acs.est.9b04696.
    [202] J. Li, X. Li, X. Wang, L. Zeng, X. Chen, J. Mu, G. Chen, Multiple regulations of Mn-based oxides in boosting peroxymonosulfate activation for norfloxacin removal, Appl. Catal. A: Gen. 584 (2019) 117170, https://doi.org/10.1016/j.apcata.2019.117170.
    [203] X. Bi, Y. Huang, X. Liu, N. Yao, P. Zhao, X. Meng, D. Astruc, Oxidative degradation of aqueous organic contaminants over shape-tunable MnO2 nanomaterials via peroxymonosulfate activation, Sep. Purif. Technol. 275 (2021) 119141, https://doi.org/10.1016/j.seppur.2021.119141.
    [204] Z. Wang, Z. Wang, W. Li, Y. Lan, C. Chen, Performance comparison and mechanism investigation of Co3O4-modified different crystallographic MnO2 (α, β, γ, and δ) as an activator of peroxymonosulfate (PMS) for sulfisoxazole degradation, Chem. Eng. J. 427 (2022) 130888, https://doi.org/10.1016/j.cej.2021.130888.
    [205] R. Yang, Y. Fan, R. Ye, Y. Tang, X. Cao, Z. Yin, Z. Zeng, MnO2‐based materials for environmental applications, Adv. Mater. 33 (2021) 2004862, https://doi.org/10.1002/adma.202004862.
    [206] J. Ma, C. Wang, W. Xi, Q. Zhao, S. Wang, M. Qiu, J. Wang, X. Wang, Removal of radionuclides from aqueous solution by manganese dioxide-based nanomaterials and mechanism research: a review, ACS EST Engg. 1 (2021) 685-705, https://doi.org/10.1021/acsestengg.0c00268.
    [207] S.M. Husnain, U. Asim, A. Yaqub, F. Shahzad, N. Abbas, Recent trends of MnO2-derived adsorbents for water treatment: a review, New J. Chem. 44 (2020) 6096-6120, https://doi.org/10.1039/C9NJ06392G.
    [208] M.A. Islam, D.W. Morton, B.B. Johnson, B. Mainali, M. Angove, Manganese oxides and their application to metal ion and contaminant removal from wastewater, J. Water Process. Eng. 26 (2018) 264-280, https://doi.org/10.1016/j.jwpe.2018.10.018.
    [209] Z. Zhang, Y. Ji, Nanostructured manganese dioxide for anticancer applications: preparation, diagnosis, and therapy, Nanoscale. 12 (2020) 17982-18003, https://doi.org/10.1039/D0NR04067C.
    [210] S. Ziller, J.F. von Bülow, S. Dahl, M. Lindén, A fast sol–gel synthesis leading to highly crystalline birnessites under non-hydrothermal conditions, J.Dalton trans. 46 (2017) 4582-4588, https://doi.org/10.1039/C7DT00109F.
    [211] Q. Wang, X. Liao, W. Xu, Y. Ren, K.J. Livi, M. Zhu, Synthesis of birnessite in the presence of phosphate, silicate, or sulfate, Inorg. Chem. 55 (2016) 10248-10258, https://doi.org/10.1021/acs.inorgchem.6b01465.
    [212] K. Matern, T. Mansfeldt, Molybdate adsorption by birnessite, Applied Clay Science. 108 (2015) 78-83, https://doi.org/10.1016/j.clay.2015.01.024.
    [213] X.H. Feng, L.M. Zhai, W.F. Tan, F. Liu, J.Z. He, Adsorption and redox reactions of heavy metals on synthesized Mn oxide minerals, Environ. Pollut. . 147 (2007) 366-373, https://doi.org/10.1016/j.envpol.2006.05.028.
    [214] S. Wan, M. Ma, L. Lv, L. Qian, S. Xu, Y. Xue, Z. Ma, Selective capture of thallium (I) ion from aqueous solutions by amorphous hydrous manganese dioxide, J. Chem. Eng. 239 (2014) 200-206, https://doi.org/10.1016/j.cej.2013.11.010.
    [215] S. Ching, J.A. Landrigan, M.L. Jorgensen, Sol-Gel synthesis of birnessite from KMnO4 and simple sugars, Chem. Mater. . 7 (1995) 1604-1606, https://doi.org/10.1021/cm00057a003.
    [216] L. Della Puppa, M. Komárek, F. Bordas, J.-C. Bollinger, E. Joussein, Adsorption of copper, cadmium, lead and zinc onto a synthetic manganese oxide, J. Colloid Interface Sci. 399 (2013) 99-106, https://doi.org/10.1016/j.jcis.2013.02.029.
    [217] C.A.C. Rosas, M. Franzreb, F. Valenzuela, W.H. Höll, Magnetic manganese dioxide as an amphoteric adsorbent for removal of harmful inorganic contaminants from water, React Funct Polym . 70 (2010) 516-520, https://doi.org/10.1016/j.reactfunctpolym.2010.03.011.
    [218] Q. Su, B. Pan, S. Wan, W. Zhang, L.J.J.o.c. Lv, i. science, Use of hydrous manganese dioxide as a potential sorbent for selective removal of lead, cadmium, and zinc ions from water, J. Colloid Interface Sci. . 349 (2010) 607-612, https://doi.org/10.1016/j.jcis.2010.05.052.
    [219] A. Baral, L. Satish, G. Zhang, S. Ju, M.K. Ghosh, A review of recent progress on nano MnO2: synthesis, surface modification and applications, J. Inorg. Organomet. Polym. Mater. 31 (2021) 899-922, https://doi.org/10.1007/s10904-020-01823-z.
    [220] X. Wang, C. Zhou, R. Shi, Q. Liu, G.I. Waterhouse, L. Wu, C.-H. Tung, T. Zhang, Supramolecular precursor strategy for the synthesis of holey graphitic carbon nitride nanotubes with enhanced photocatalytic hydrogen evolution performance, Nano Res. 12 (2019) 2385-2389, https://doi.org/10.1007/s12274-019-2357-0.
    [221] H. Niu, W. Zhao, H. Lv, Y. Yang, Y. Cai, Accurate design of hollow/tubular porous g-C3N4 from melamine-cyanuric acid supramolecular prepared with mechanochemical method, Chem. Eng. J. 411 (2021) 128400, https://doi.org/10.1016/j.cej.2020.128400.
    [222] Y. Wang, Y. Di, M. Antonietti, H. Li, X. Chen, X. Wang, Excellent visible-light photocatalysis of fluorinated polymeric carbon nitride solids, Chem. Mater. 22 (2010) 5119-5121, https://doi.org/10.1021/cm1019102.
    [223] S. Tasleem, M. Tahir, Constructing LaxCoyO3 Perovskite Anchored 3D g-C3N4 Hollow Tube Heterojunction with Proficient Interface Charge Separation for Stimulating Photocatalytic H2 Production, Energy Fuels. 35 (2021) 9727–9746, https://doi.org/10.1021/acs.energyfuels.1c00512.
    [224] T.B. Nguyen, C. Huang, R.A. Doong, C.W. Chen, C.D. Dong, Visible-light photodegradation of sulfamethoxazole (SMX) over Ag-P-codoped g-C3N4 (Ag-P@ UCN) photocatalyst in water, Chem. Eng. J. 384 (2020) 123383, https://doi.org/10.1016/j.cej.2019.123383.
    [225] A.B. Ganganboina, M.D. Nguyen, T.H.L. Nguyen, E.P. Kuncoro, R.A. Doong, Boron and phosphorus co-doped one-dimensional graphitic carbon nitride for enhanced visible-light-driven photodegradation of diclofenac, Chem. Eng. J. 425 (2021) 131520, https://doi.org/10.1016/j.cej.2021.131520.
    [226] S.A. Shevlin, Z.X. Guo, Anionic dopants for improved optical absorption and enhanced photocatalytic hydrogen production in graphitic carbon nitride, Chem. Mater. 28 (2016) 7250-7256, https://doi.org/10.1021/acs.chemmater.6b02002.
    [227] A. Mirzaei, Z. Chen, F. Haghighat, L. Yerushalmi, Magnetic fluorinated mesoporous g-C3N4 for photocatalytic degradation of amoxicillin: transformation mechanism and toxicity assessment, Appl. Catal. B: Environ. 242 (2019) 337-348, https://doi.org/10.1016/j.apcatb.2018.10.009.
    [228] I.A. de Sousa Filho, L.R. Arana, G. Doungmo, C.K. Grisolia, H. Terrashke, I.T. Weber, SrSnO3/g-C3N4 and sunlight: Photocatalytic activity and toxicity of degradation byproducts, J. Environ. Chem. Eng. 8 (2020) 103633, https://doi.org/10.1016/j.jece.2019.103633.
    [229] M. Sher, S.A. Khan, S. Shahid, M. Javed, M.A. Qamar, A. Chinnathambi, H.S. Almoallim, Synthesis of novel ternary hybrid g-C3N4@ Ag-ZnO nanocomposite with Z-scheme enhanced solar light‐driven methylene blue degradation and antibacterial activities, J. Environ. Chem. Eng. 9 (2021) 105366, https://doi.org/10.1016/j.jece.2021.105366.
    [230] H. Fattahimoghaddam, T. Mahvelati Shamsabadi, B.K. Lee, Efficient photodegradation of rhodamine B and tetracycline over robust and green g-C3N4 nanostructures: Supramolecular design, J. Hazard. Mater. 403 (2021) 123703, https://doi.org/10.1016/j.jhazmat.2020.123703.
    [231] Y. Wu, H. Wang, W. Tu, Y. Liu, S. Wu, Y.Z. Tan, J.W. Chew, Construction of hierarchical 2D-2D Zn3In2S6/fluorinated polymeric carbon nitride nanosheets photocatalyst for boosting photocatalytic degradation and hydrogen production performance, Appl. Catal. B: Environ. 233 (2018) 58-69, https://doi.org/10.1016/j.apcatb.2018.03.105.
    [232] J. Zhang, M. Zhang, G. Zhang, X. Wang, Synthesis of carbon nitride semiconductors in sulfur flux for water photoredox catalysis, ACS Catal. 2 (2012) 940-948, https://doi.org/10.1021/cs300167b.
    [233] Y. Jiang, Z. Sun, C. Tang, Y. Zhou, L. Zeng, L. Huang, Enhancement of photocatalytic hydrogen evolution activity of porous oxygen doped g-C3N4 with nitrogen defects induced by changing electron transition, Appl. Catal. B: Environ. 240 (2019) 30-38, https://doi.org/10.1016/j.apcatb.2018.08.059.
    [234] J.-R. Zhang, Y. Ma, S.Y. Wang, J. Ding, B. Gao, E. Kan, W. Hua, Accurate K-edge X-ray photoelectron and absorption spectra of g-C3N4 nanosheets by first-principles simulations and reinterpretations, Phys. Chem. 21 (2019) 22819-22830, https://doi.org/10.1039/C9CP04573B.
    [235] Y. Zhang, T. Mori, J. Ye, M. Antonietti, Phosphorus-doped carbon nitride solid: enhanced electrical conductivity and photocurrent generation, J. Am. Chem. Soc. 132 (2010) 6294-6295, https://doi.org/10.1021/ja101749y.
    [236] M.D.G. de Luna, L.K.B. Paragas, R.A. Doong, Insights into the rapid elimination of antibiotics from aqueous media by tunable C3N4 photocatalysts: Effects of dopant amount, co-existing ions and reactive oxygen species, Sci. Total Environ. 669 (2019) 1053-1061, https://doi.org/10.1016/j.scitotenv.2019.03.003.
    [237] M. Aleksandrzak, D. Baranowska, T. Kedzierski, K. Sielicki, S. Zhang, M. Biegun, E. Mijowska, Superior synergy of g-C3N4/Cd compounds and Al-MOF-derived nanoporous carbon for photocatalytic hydrogen evolution, Appl. Catal. B. 257 (2019) 117906, https://doi.org/10.1016/j.apcatb.2019.117906.
    [238] Y. Yang, Z. Bian, Oxygen doping through oxidation causes the main active substance in g-C3N4 photocatalysis to change from holes to singlet oxygen, Sci. Total Environ. 753 (2021) 141908, https://doi.org/10.1016/j.scitotenv.2020.141908.
    [239] T.B. Nguyen, C. Huang, R.A. Doong, Enhanced catalytic reduction of nitrophenols by sodium borohydride over highly recyclable Au@graphitic carbon nitride nanocomposites, Appl. Catal. B Environ. 240 (2019) 337-347, https://doi.org/10.1016/j.apcatb.2018.08.035.
    [240] T.B. Nguyen, C. Huang, R.A. Doong, Photocatalytic degradation of bisphenol A over a ZnFe2O4/TiO2 nanocomposite under visible light, Sci. Total Environ. 646 (2019) 745-756, https://doi.org/10.1016/j.scitotenv.2018.07.352.
    [241] T. Wu, Q. Xue, F. Liu, J. Zhang, C. Zhou, J. Cao, H. Chen, Mechanistic insight into interactions between tetracycline and two iron oxide minerals with different crystal structures, Chem. Eng. J. 366 (2019) 577-586, https://doi.org/10.1016/j.cej.2019.02.128.
    [242] J.F. Leal, V.I. Esteves, E.B. Santos, Solar photodegradation of oxytetracycline in brackish aquaculture water: New insights about effects of Ca2+ and Mg2+, Chemistry is J. Photochem. Photobiol. A. 372 (2019) 218-225, https://doi.org/10.1016/j.jphotochem.2018.12.022.
    [243] V.D. Dang, J. Adorna Jr, T. Annadurai, T.A.N. Bui, H.L. Tran, L.Y. Lin, R.A. Doong, Indirect Z-scheme nitrogen-doped carbon dot decorated Bi2MoO6/g-C3N4 photocatalyst for enhanced visible-light-driven degradation of ciprofloxacin, Chem. Eng. J. 422 (2021) 130103, https://doi.org/10.1016/j.cej.2021.130103.
    [244] A.M. Dugandžić, A.V. Tomašević, M.M. Radišić, N.Ž. Šekuljica, D.Ž. Mijin, S.D. Petrović, Effect of inorganic ions, photosensitisers and scavengers on the photocatalytic degradation of nicosulfuron, J. Photochem. Photobiol. A: Chem. 336 (2017) 146-155, https://doi.org/10.1016/j.jphotochem.2016.12.031.
    [245] Ö. Tuna, E.B. Simsek, Synergic contribution of intercalation and electronic modification of g-C3N4 for an efficient visible light-driven catalyst for tetracycline degradation, J. Environ. Chem. Eng. 8 (2020) 104445, https://doi.org/10.1016/j.jece.2020.104445.
    [246] M. Stylianou, A. Christou, C. Michael, A. Agapiou, P. Papanastasiou, D. Fatta-Kassinos, Adsorption and removal of seven antibiotic compounds present in water with the use of biochar derived from the pyrolysis of organic waste feedstocks, J. Environ. Chem. Eng. 9 (2021) 105868, https://doi.org/10.1016/j.jece.2021.105868.
    [247] D. Monga, D. Ilager, N.P. Shetti, S. Basu, T.M. Aminabhavi, 2D/2d heterojunction of MoS2/g-C3N4 nanoflowers for enhanced visible-light-driven photocatalytic and electrochemical degradation of organic pollutants, J. Environ. Manage. 274 (2020) 111208, https://doi.org/10.1016/j.jenvman.2020.111208.
    [248] J. Feng, D. Zhang, H. Zhou, M. Pi, X. Wang, S. Chen, Coupling P nanostructures with P-doped g-C3N4 as efficient visible light photocatalysts for H2 evolution and RhB degradation, ACS Sustain. Chem. Eng. 6 (2018) 6342-6349, https://doi.org/10.1021/acssuschemeng.8b00140.
    [249] C. Liu, L. Liu, X. Tian, Y. Wang, R. Li, Y. Zhang, Z. Song, B. Xu, W. Chu, F. Qi, Coupling metal–organic frameworks and g-C3N4 to derive Fe@ N-doped graphene-like carbon for peroxymonosulfate activation: Upgrading framework stability and performance, Appl. Catal. B: Environ. 255 (2019) 117763, https://doi.org/10.1016/j.apcatb.2019.117763.
    [250] A. Beyhaqi, Q. Zeng, S. Chang, M. Wang, S.M.T. Azimi, C. Hu, Construction of g-C3N4/WO3/MoS2 ternary nanocomposite with enhanced charge separation and collection for efficient wastewater treatment under visible light, Chemosphere. 247 (2020) 125784, https://doi.org/10.1016/j.chemosphere.2019.125784.
    [251] H. Xu, Q. Ye, J. Zhang, Q. Li, M. Wang, P. Zhou, G. Zhou, Q. Wang, Oxygen functionalized g-C3N4 strengthen Fe (III)/H2O2 system by accelerating Fe (III)/Fe (II) cycles under natural solar light: A mutual-promoting configuration, Sci. Total Environ. 778 (2021) 146280, https://doi.org/10.1016/j.scitotenv.2021.146280.
    [252] A. Sudhaik, P. Raizada, P. Singh, A. Hosseini-Bandegharaei, V.K. Thakur, V.H. Nguyen, Highly effective degradation of imidacloprid by H2O2/fullerene decorated P-doped g-C3N4 photocatalyst, J. Environ. Chem. Eng. 8 (2020) 104483, https://doi.org/10.1016/j.jece.2020.104483.
    [253] B. Palanivel, M. Lallimathi, B. Arjunkumar, M. Shkir, T. Alshahrani, K.S. Al Namshah, M.S. Hamdy, S. Shanavas, M. Venkatachalam, G. Ramalingam, rGO supported g-C3N4/CoFe2O4 heterojunction: Visible-light-active photocatalyst for effective utilization of H2O2 to organic pollutant degradation and OH radicals production, J. Environ. Chem. Eng. 9 (2021) 104698, https://doi.org/10.1016/j.jece.2020.104698.
    [254] A.B. Ganganboina, M.D. Nguyen, T.H.L. Nguyen, E.P. Kuncoro, R.A. Doong, Boron and phosphorus co-doped one-dimensional graphitic carbon nitride for enhanced visible-light-driven photodegradation of diclofenac, Chem. Eng. J. 425 (2021) 131520, https://doi.org/10.1016/j.cej.2021.131520.
    [255] T. Mahvelati-Shamsabadi, H. Fattahimoghaddam, B.K. Lee, S. Bae, J. Ryu, Synthesis of hexagonal rosettes of g-C3N4 with boosted charge transfer for the enhanced visible-light photocatalytic hydrogen evolution and hydrogen peroxide production, J. Colloid Interface Sci. 597 (2021) 345-360, https://doi.org/10.1016/j.jcis.2021.04.019.
    [256] V. Balakumar, S. Selvarajan, A. Baishnisha, S. Kathiresan, In-situ growth of TiO2@ B-doped g-C3N4 core-shell nanospheres for boosts the photocatalytic detoxification of emerging pollutants with mechanistic insight, Appl. Surf. Sci. 577 (2022) 151924, https://doi.org/10.1016/j.apsusc.2021.151924.
    [257] A.A. Isari, S. Moradi, S.S. Rezaei, F. Ghanbari, E. Dehghanifard, B. Kakavandi, Peroxymonosulfate catalyzed by core/shell magnetic ZnO photocatalyst towards malathion degradation: Enhancing synergy, catalytic performance and mechanism, Sep. Purif. Technol. 275 (2021) 119163, https://doi.org/10.1016/j.seppur.2021.119163.
    [258] Q. Liu, J. Huang, L. Wang, X. Yu, J. Sun, H. Tang, Unraveling the roles of hot electrons and cocatalyst toward broad spectrum photocatalytic H2 generation of g‐C3N4 Nanotube, Solar RRL. 5 (2021) 2000504, https://doi.org/10.1002/solr.202000504.
    [259] T.B. Nguyen, C. Huang, R.A. Doong, C.W. Chen, C.D. Dong, Visible-light photodegradation of sulfamethoxazole (SMX) over Ag-P-codoped g-C3N4 (Ag-P@ UCN) photocatalyst in water, Chem. Eng. J. 384 (2020) 123383, https://doi.org/10.1016/j.cej.2019.123383.
    [260] Y. Rivera Lugo, R. Félix Navarro, B. Trujillo Navarrete, E. Reynoso Soto, C. Silva Carrillo, C. Cruz Gutiérrez, E. Quiroga González, J. Calva Yanez, Flower-like δ-MnO2 as cathode material of Li-ion batteries of high charge-discharge rates, Fuel. 287 (2021) 119463, https://doi.org/10.1016/j.fuel.2020.119463.
    [261] Z. Mo, H. Xu, Z. Chen, X. She, Y. Song, J. Lian, X. Zhu, P. Yan, Y. Lei, S. Yuan, Construction of MnO2/Monolayer g-C3N4 with Mn vacancies for Z-scheme overall water splitting, Appl. Catal. B: Environ. 241 (2019) 452-460, https://doi.org/10.1016/j.apcatb.2018.08.073.
    [262] Z. Wang, H. Jia, Z. Liu, Z. Peng, Y. Dai, C. Zhang, X. Guo, T. Wang, L. Zhu, Greatly enhanced oxidative activity of δ-MnO2 to degrade organic pollutants driven by dominantly exposed {− 111} facets, J. Hazard. Mater. 413 (2021) 125285, https://doi.org/10.1016/j.jhazmat.2021.125285.
    [263] J. Adorna Jr, T. Annadurai, T.A.N. Bui, H.L. Tran, L.Y. Lin, R.A. Doong, Indirect Z-scheme nitrogen-doped carbon dot decorated Bi2MoO6/g-C3N4 photocatalyst for enhanced visible-light-driven degradation of ciprofloxacin, Chem. Eng. J. 422 (2021) 130103, https://doi.org/10.1016/j.cej.2021.130103.
    [264] H. Kim, A. Watthanaphanit, N. Saito, Simple solution plasma synthesis of hierarchical nanoporous MnO2 for organic dye removal, ACS Sustainable Chem. Eng. 5 (2017) 5842-5851, https://doi.org/10.1021/acssuschemeng.7b00560.
    [265] T.B. Nguyen, C. Huang, R.A. Doong, C.W. Chen, C.D. Dong, CoO-3D ordered mesoporous carbon nitride (CoO@ mpgCN) composite as peroxymonosulfate activator for the degradation of sulfamethoxazole in water, J. Hazard. Mater. 401 (2021) 123326, https://doi.org/10.1016/j.jhazmat.2020.123326.
    [266] F. Raziq, M. Humayun, A. Ali, T. Wang, A. Khan, Q. Fu, W. Luo, H. Zeng, Z. Zheng, B. Khan, Synthesis of S-Doped porous g-C3N4 by using ionic liquids and subsequently coupled with Au-TiO2 for exceptional cocatalyst-free visible-light catalytic activities, Appl. Catal. B: Environ. 237 (2018) 1082-1090, https://doi.org/10.1016/j.apcatb.2018.06.009.
    [267] P. Babu, S. Mohanty, B. Naik, K. Parida, Synergistic effects of boron and sulfur Co-doping into graphitic carbon nitride framework for enhanced photocatalytic activity in visible light driven hydrogen generation, ACS Appl. Energy Mater. 1 (2018) 5936-5947, https://doi.org/10.1021/acsaem.8b00956.
    [268] S.P. Gupta, B.A. Kakade, B.R. Sathe, Q. Qiao, D.J. Late, P.S. Walke, Thermally driven high-rate intercalated pseudocapacitance of flower-like architecture of ultrathin few layered δ-MnO2 nanosheets on carbon nano-onions, ACS Appl. Energy Mater. 3 (2020) 11398-11409, https://doi.org/10.1021/acsaem.0c02325.
    [269] S. Karna, D. Neupane, S.R. Mishra, J. Choi, R.K. Gupta, P. Karna, Electrochemical behavior of S and C mono-doped sodium tantalate photocatalysts, J. Electron. Mater. 50 (2021) 7133-7142, https://doi.org/10.1007/s11664-021-09206-x.
    [270] M.D. Nguyen, T.B. Nguyen, A. Thamilselvan, T.G. Nguyen, E.P. Kuncoro, R.A. Doong, Fabrication of visible-light-driven tubular F, P-codoped graphitic carbon nitride for enhanced photocatalytic degradation of tetracycline, J. Environ. Chem. Eng. 10 (2022) 106905, https://doi.org/10.1016/j.jece.2021.106905.
    [271] B. Bhagat, A. Dashora, Understanding the synergistic effect of Co-loading and B-doping in g-C3N4 for enhanced photocatalytic activity for overall solar water splitting, Carbon. 178 (2021) 666-677, https://doi.org/10.1016/j.carbon.2021.03.049.
    [272] Q. Guo, Y. Zhang, J. Qiu, G. Dong, Engineering the electronic structure and optical properties of g-C3N4 by non-metal ion doping, J. Mater. Chem. C. 4 (2016) 6839-6847, https://doi.org/10.1039/C6TC01831A.
    [273] S. Wang, J. Hu, J. Wang, Degradation of sulfamethoxazole using PMS activated by cobalt sulfides encapsulated in nitrogen and sulfur co-doped graphene, Sci. Total Environ. 827 (2022) 154379, https://doi.org/10.1016/j.scitotenv.2022.154379.
    [274] Z. Guan, S. Zuo, F. Yang, B. Zhang, H. Xu, D. Xia, M. Huang, D. Li, The polarized electric field on Fe-NCS promotes non-radical process of peroxymonosulfate degrade diclofenac sodium, Colloids Surf. A Physicochem. Eng. Asp. 621 (2021) 126608, https://doi.org/10.1016/j.colsurfa.2021.126608.
    [275] T.B. Nguyen, V.A. Thai, C.W. Chen, C. Huang, R.A. Doong, L. Chen, C.D. Dong, N-doping modified Zeolitic Imidazole Framework-67 (ZIF-67) for enhanced peroxymonosulfate activation to remove ciprofloxacin from aqueous solution, Sep. Purif. Technol. 288 (2022) 120719, https://doi.org/10.1016/j.seppur.2022.120719.
    [276] Y. Li, J. Li, Y. Pan, Z. Xiong, G. Yao, R. Xie, B. Lai, Peroxymonosulfate activation on FeCo2S4 modified g-C3N4 (FeCo2S4-CN): Mechanism of singlet oxygen evolution for nonradical efficient degradation of sulfamethoxazole, Chem. Eng. J. 384 (2020) 123361, https://doi.org/10.1016/j.cej.2019.123361.
    [277] F. Ghanbari, M. Ahmadi, F. Gohari, Heterogeneous activation of peroxymonosulfate via nanocomposite CeO2-Fe3O4 for organic pollutants removal: The effect of UV and US irradiation and application for real wastewater, Sep. Purif. Technol. 228 (2019) 115732, https://doi.org/ 10.1016/j.seppur.2019.115732.
    [278] L. Wang, X. Lan, W. Peng, Z. Wang, Uncertainty and misinterpretation over identification, quantification and transformation of reactive species generated in catalytic oxidation processes: A review, J. Hazard. Mater. 408 (2021) 124436, https://doi.org/10.1016/j.jhazmat.2020.124436.
    [279] L. Jin, S. You, X. Duan, Y. Yao, J. Yang, Y. Liu, Peroxymonosulfate activation by Fe3O4-MnO2/CNT nanohybrid electroactive filter towards ultrafast micropollutants decontamination: Performance and mechanism, J. Hazard. Mater. 423 (2022) 127111, https://doi.org/10.1016/j.jhazmat.2021.127111.
    [280] W.J. Lee, Y. Bao, A. Liangdy, X. Hu, T.T. Lim, Insights into the synergistic role of catalytic ceramic membranes for ozone and peroxymonosulfate activation towards effective recalcitrant micropollutant degradation and mineralization, Chem. Eng. J.
    . 430 (2022) 132921, https://doi.org/10.1016/j.cej.2021.132921.
    [281] Y. Zhang, J. Li, J. Bai, Z. Shen, L. Li, L. Xia, S. Chen, B. Zhou, Exhaustive conversion of inorganic nitrogen to nitrogen gas based on a photoelectro-chlorine cycle reaction and a highly selective nitrogen gas generation cathode, Environ. Sci. Technol. 52 (2018) 1413-1420, https://doi.org/10.1021/acs.est.7b04626.
    [282] M. Noorisepehr, B. Kakavandi, A.A. Isari, F. Ghanbari, E. Dehghanifard, N. Ghomi, F. Kamrani, Sulfate radical-based oxidative degradation of acetaminophen over an efficient hybrid system: Peroxydisulfate decomposed by ferroferric oxide nanocatalyst anchored on activated carbon and UV light, Sep. Purif. Technol. 250 (2020) 116950, https://doi.org/10.1016/j.seppur.2020.116950.
    [283] S. Ye, G. Zeng, X. Tan, H. Wu, J. Liang, B. Song, N. Tang, P. Zhang, Y. Yang, Q. Chen, Nitrogen-doped biochar fiber with graphitization from Boehmeria nivea for promoted peroxymonosulfate activation and non-radical degradation pathways with enhancing electron transfer, Appl. Catal. B: Environ. 269 (2020) 118850, https://doi.org/10.1016/j.apcatb.2020.118850.
    [284] D. Roy, S. Neogi, S. De, Visible light assisted activation of peroxymonosulfate by bimetallic MOF based heterojunction MIL-53 (Fe/Co)/CeO2 for atrazine degradation: Pivotal roles of dual redox cycle for reactive species generation, Chem. Eng. J. 430 (2022) 133069, https://doi.org/10.1016/j.cej.2021.133069.
    [285] L. Acharya, S. Nayak, S.P. Pattnaik, R. Acharya, K. Parida, Resurrection of boron nitride in pn type-II boron nitride/B-doped-g-C3N4 nanocomposite during solid-state Z-scheme charge transfer path for the degradation of tetracycline hydrochloride, J. Colloid Interface Sci. 566 (2020) 211-223, https://doi.org/10.1016/j.cej.2021.133069.
    [286] Q. Chen, Y. Liu, Y. Lu, Y. Hou, X. Zhang, W. Shi, Y. Huang, Atomically dispersed Fe/Bi dual active sites single-atom nanozymes for cascade catalysis and peroxymonosulfate activation to degrade dyes, J. Hazard. Mater. 422 (2022) 126929, https://doi.org/10.1016/j.jhazmat.2021.126929.
    [287] N. Hasan, S. Kim, M.S. Kim, N.T.T. Nguyen, C. Lee, J. Kim, Visible light-induced activation of peroxymonosulfate in the presence of ferric ions for the degradation of organic pollutants, Sep. Purif. Technol. 240 (2020) 116620, https://doi.org/10.1016/j.seppur.2020.116620.
    [288] A. Ahmed, M. Usman, B. Yu, F. Gao, Y. Shen, H. Cong, Heterogeneous activation of peroxymonosulfate using superparamagnetic β-CD-CoFe2O4 catalyst for the removal of endocrine-disrupting bisphenol A: Performance and degradation mechanism, Sep. Purif. Technol. 279 (2021) 119752, https://doi.org/10.1016/j.seppur.2021.119752.
    [289] M.A.N. Khan, P.K. Klu, C. Wang, W. Zhang, R. Luo, M. Zhang, J. Qi, X. Sun, L. Wang, J. Li, Metal-organic framework-derived hollow Co3O4/carbon as efficient catalyst for peroxymonosulfate activation, Chem. Eng. J. 363 (2019) 234-246, https://doi.org/10.1016/j.cej.2019.01.129.
    [290] P. Xia, B. Zhu, B. Cheng, J. Yu, J. Xu, 2D/2D g-C3N4/MnO2 nanocomposite as a direct Z-scheme photocatalyst for enhanced photocatalytic activity, ACS Sustain. Chem. Eng. 6 (2018) 965-973, https://doi.org/10.1021/acssuschemeng.7b03289.
    [291] Z. Wang, Y. Han, W. Fan, Y. Wang, L. Huang, Shell-core MnO2/Carbon@ Carbon nanotubes synthesized by a facile one-pot method for peroxymonosulfate oxidation of tetracycline, Sep. Purif. Technol.
    . 278 (2021) 119558, https://doi.org/10.1016/j.seppur.2021.119558.
    [292] S. Ndayiragije, Y. Zhang, Y. Zhou, Z. Song, N. Wang, T. Majima, L. Zhu, Mechanochemically tailoring oxygen vacancies of MnO2 for efficient degradation of tetrabromobisphenol A with peroxymonosulfate, Appl. Catal. B: Environ. 307 (2022) 121168, https://doi.org/10.1016/j.apcatb.2022.121168.
    [293] A. Kumar, P. Raizada, P. Singh, R.V. Saini, A.K. Saini, A. Hosseini-Bandegharaei, Perspective and status of polymeric graphitic carbon nitride based Z-scheme photocatalytic systems for sustainable photocatalytic water purification, Chem. Eng. J. 391 (2020) 123496, https://doi.org/10.1016/j.cej.2019.123496.
    [294] D. Roy, S. Neogi, S. De, Mechanistic investigation of photocatalytic degradation of Bisphenol-A using MIL-88A (Fe)/MoS2 Z-scheme heterojunction composite assisted peroxymonosulfate activation, Chem. Eng. J. 428 (2022) 131028, https://doi.org/10.1016/j.cej.2021.131028.
    [295] N.T.T. Nguyen, A.Q.K. Nguyen, M.S. Kim, C. Lee, J. Kim, Effect of Fe3+ as an electron-transfer mediator on WO3-induced activation of peroxymonosulfate under visible light, Chem. Eng. J. 411 (2021) 128529, https://doi.org/10.1016/j.cej.2021.128529.
    [296] A. Al Anazi, W.H. Abdelraheem, K. Scheckel, M.N. Nadagouda, K. O'Shea, D.D. Dionysiou, Novel franklinite-like synthetic zinc-ferrite redox nanomaterial: synthesis, and evaluation for degradation of diclofenac in water, Appl. Catal. B: Environ. 275 (2020) 119098, https://doi.org/10.1016/j.apcatb.2020.119098.
    [297] M. Elangovan, S.M. Bharathaiyengar, J. PonnanEttiyappan, Photocatalytic degradation of diclofenac using TiO2-CdS heterojunction catalysts under visible light irradiation, Environ. Sci. Pollut. Res. 28 (2021) 18186-18200, https://doi.org/10.1007/s11356-020-11538-w.
    [298] S.M. Chaudhari, O.S. Gonsalves, P.R. Nemade, Enhanced photocatalytic degradation of Diclofenac with Agl/CeO2: A comparison with Mn, Cu and Ag-doped CeO2, Mater. Res. Bull. 143 (2021) 111463, https://doi.org/10.1016/j.materresbull.2021.111463.
    [299] E. Mugunthan, M. Saidutta, P. Jagadeeshbabu, Visible light assisted photocatalytic degradation of diclofenac using TiO2-WO3 mixed oxide catalysts, Environ. Nanotechnol. Monit. Manag. 10 (2018) 322-330, https://doi.org/10.1016/j.enmm.2018.07.012.
    [300] P. Calza, V. Sakkas, C. Medana, C. Baiocchi, A. Dimou, E. Pelizzetti, T. Albanis, Photocatalytic degradation study of diclofenac over aqueous TiO2 suspensions, Appl. Catal. B: Environ. 67 (2006) 197-205, https://doi.org/10.1016/j.apcatb.2006.04.021.
    [301] J. Jang, A. Shahzad, S.H. Woo, D.S. Lee, Magnetic Ti3C2Tx (Mxene) for diclofenac degradation via the ultraviolet/chlorine advanced oxidation process, Environ. Res. 182 (2020) 108990, https://doi.org/10.1016/j.envres.2019.108990.
    [302] L. Tian, S.S. Liu, X.H. Jiang, L.S. Chen, S.L. Wu, W.J. Xiao, J.P. Fan, D.S. Wu, J.-P. Zou, Selective oxidation of diclofenac sodium with different electronegative moieties via coexisting SO4− and OH, Sci. Total Environ. 782 (2021) 146857, https://doi.org/10.1016/j.scitotenv.2021.146857.

    QR CODE