研究生: |
林芳毅 Lin,Fang-Yi |
---|---|
論文名稱: |
比較STEAM教育之DDMT教學模式與傳統學科教學在ARCS學習動機之差異 - 以彰化縣某地區國小學生為例 Comparing the DDMT Teaching Model of STEAM Education with the Disciplinary Teaching Approach on ARCS Motivation - Taking the Elementary School Students in Changhua County as an Example |
指導教授: |
郭哲宇
Kuo, Che-Yu |
口試委員: |
邱文信
Chiu, Wen-Hsin 曹永忠 Tsao, Yung-Chung |
學位類別: |
碩士 Master |
系所名稱: |
竹師教育學院 - 竹師教育學院跨領域 STEAM 教育碩士在職專班 Master Program in Interdisciplinary STEAM Education |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 83 |
中文關鍵詞: | STEAM 、DDMT教學模式 、學科教學 、ARCS動機模式 |
外文關鍵詞: | STEAM, DDMT Teaching Model, Disciplinary Approach, ARCS |
相關次數: | 點閱:58 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著現今社會的快速變遷及各領域日新月異的變化,全世界多國政府亟欲培育未來世代的人才,紛紛進行新世代的教育改革,跨領域STEM或STEAM教育在此社會背景下應運而生並造成全球的風潮。教育部從2014年公佈十二年國民基本教育課程綱要總綱起,便開啟了一系列的新世代的教育改革,課綱不僅包含主流的分領域或分科教學的部定課程,還有跨領域或跨科課程統整與應用的課程設計,教學方面實施部定課程與彈性課程並行。在跨領域STEAM教育方面,清華STEAM學校以DDMT教學模式已推展於數十所中小學的彈性課程中實施,為了釐清其教學成效,因此將DDMT教學模式與傳統學科教學成效做比較分析以遂行進一步的實驗教學研究。
本研究目的在釐清DDMT教學模式相對於傳統學科教學,在整體學生和不同性別學生對於ARCS學習動機之「注意力」、「相關性」、「自信心」、「滿意度」的情形。分別對實驗組35名及對照組31名國小高年級學生進行各六小時的實驗教學後實施學生自我評量的問卷填寫。分析結果回應了本研究三個問題:第一,接受DDMT教學模式相較於傳統學科教學的學生,在ARCS動機模式上有較高的「注意力」、「相關性」、「自信心」、「滿意度」;第二,不同性別學生的學習動機沒有顯著差異;第三,DDMT模式與傳統學科教學對不同性別學生在ARCS學習動機沒有不同的影響。最後,本研究結論提出DDMT教學模式對學生學習動機有積極正向影響;不同性別的學生在ARCS學習動機沒有顯著差異;不同的教學模式對不同性別學生的學習動機沒有不同影響。
With the rapid changes in various fields of the society nowadays, governments around the world are eager to cultivate the next-generation talents. As a result, they have been undertaking educational reforms for the new generation. In this social context, interdisciplinary STEM or STEAM education has emerged and created a global trend. Since the Ministry of Education in Taiwan announced the General Guidelines of 12-Year Basic Education Curriculum in 2014, a new era of educational reform has been set in motion. The curriculum guidelines not only includes the mainstream disciplinary approach but also integrate and apply cross-domain or cross-disciplinary courses, so both MOE-mandated and flexible curriculum designs are implemented concurrently.
In the realm of interdisciplinary STEAM education, the DDMT teaching model of Tsing-Hua STEAM School has been implemented as flexible courses in dozens of primary and secondary schools. In order to clarify the effectiveness of this teaching model, an experimental teaching research is conducted between the DDMT model and traditional disciplinary approach.
The purpose of this study is to clarify the differences between the DDMT teaching model and traditional disciplinary approach in terms of the overall students' and different genders' perception of the ARCS model, including "Attention," "Relevance," "Confidence," and "Satisfaction." A total of 35 students in the experimental group and 31 students in the control group, all from upper grades of primary school, participated in the six-hour experimental teaching and subsequently filled out a self-assessment questionnaire. The analysis results address three research questions: firstly, students receiving the DDMT teaching model show higher levels of "Attention," "Relevance," "Confidence," and "Satisfaction" in the ARCS model compared to those receiving traditional disciplinary approach; secondly, there is no significant difference in learning motivation between students of different genders; and thirdly, the DDMT model and traditional disciplinary approach have no differential impact on the learning motivation of students of different genders. In conclusion, this study concludes that the DDMT teaching model has a positive impact on students' learning motivation, there is no significant difference in the ARCS model between students of different genders, and different teaching models do not have different effects on the learning motivation of students of different genders.
1.王子華 (2019)。「清華STEAM學校」之DDMT教學模式的建構。科學教育實作學門電子期刊,17。
2.王子華、林紀慧 (2018)。「清華STEAM學校」推動創新數理人才在地培育機制。科學教育實作學門電子期刊,12。
3.林宜親、李冠慧、宋玟欣、柯華葳、曾志朗、洪蘭、阮啟弘 (2011)。以認知神經科學取向探討兒童注意力的發展和學習之關聯。教育心理學報,42(3),517-541。
4.郝光中 (2022)。ARCS 學習動機論融入專題式學習於動態圖像設計課程之實踐與反思。大學教學實務與研究學刊,6(1),1-39。
5.張芬芬 (2019)。十二年國教的統整課程與分科課程:對立?取代?互補?臺灣教育評論月刊,8(1),195-200。
6.教育部(2014)。十二年國民基本教育課程綱要總綱。取自https://www.naer.edu.tw/PageSyllabus?fid=52
7.教育部(2017)。國民中學及國民小學實施跨領域或跨科目協同教學參考原則。臺北市:教育部。
8.教育部(2018)。十二年國民基本教育課程綱要國民中學暨普通型高級中等學校: 科技領域。取自https://www.naer.edu.tw/PageSyllabus?fid=52
9.清華STEAM學校(2022)。取自https://tsinghuasteam.org/
10.許碧蕙 (2021)。從 ARCS-V 動機理論落實 108 課綱國中小教學實施之初探。臺灣教育評論月刊,10(8), 27-35。
11.陳美伶(2019)。臺中市屯區公立國民小學六年級學童英語學習動機、學習態度及學習成效之相關研究。2019. PhD Thesis。
12.蕭佳純 (2017)。學生學習動機與學業成就關聯之研究,教師創意教學的多層次調節式中介效果。特殊教育研究學刊, 42(1),79-111。
13.親子天下整合傳播部(2022)。落實教育現場啟動STEAM師資培育,解決台灣STEAM 教育困境。親自天下。取自https://flipedu.parenting.com.tw/article/004718
14.Achat-Mendes, C., Anfuso, C., Johnson, C., & Shepler, B. (2020). Learning, leaders, and STEM skills: adaptation of the supplemental instruction model to improve STEM education and build transferable skills in undergraduate courses and beyond: STEM supplemental instruction. Journal of STEM Education: Innovations and Research, 20(2).
15.Adnan, H. K., Jannah, M., & Razali, K. (2020, November). Periodic assignment: Exploring students' perception and their academic achievement. In ELT Forum: Journal of English Language Teaching (Vol. 9, No. 2, pp. 15-24).
16.Akbari, O., & Sahibzada, J. (2020). Students’ self-confidence and its impacts on their learning process. American International Journal of Social Science Research, 5(1), 1-15.
17.Albrecht, J. R., & Karabenick, S. A. (2018). Relevance for learning and motivation in education. The Journal of Experimental Education, 86(1), 1-10.
18.Allison, N. (2022) Measuring student attention as student and teacher reflection. In: IATEFL 2021, 19-21 June 2021, pp. 127-129. ISBN 9781912588381
19.Anwer, F. (2019). Activity-Based Teaching, Student Motivation and Academic Achievement. Journal of Education and Educational Development, 6(1), 154-170.
20.Ardianti, S., Yahya, F., & Fitrianto, S. (2020). The Impact of Using the STEM Education Approach with Blended Learning to Increase Students' Learning Interest. Indonesian Journal of STEM Education, 2(1), 1-10.
21.Aron, A., Coups, E. J., & Aron, E. N. (2013). Statistics for the behavioral and social sciences: A brief course: Pearson new international edition. Pearson Higher Ed.
22.Asmar, C. (2012). Indigenous teaching at Australian universities.
23.Asseburg, R., & Frey, A. (2013). Too hard, too easy, or just right? The relationship between effort or boredom and ability-difficulty fit. Psychological Test and Assessment Modeling, 55(1), 92.
24.Ausubel, D. P. (2012). The acquisition and retention of knowledge: A cognitive view. Springer Science & Business Media.
25.Bandura, A. (1977). Self-efficacy: toward a unifying theory of behavioral change. Psychological review, 84(2), 191.
26.Bentley, J. (2021). The Impact of STEM Education on Elementary School Math and Science Achievement. Liberty University.
27.Berti, M. (2018). Open educational resources in higher education. Issues and Trends in Learning Technologies, 6(1).
28.Bloom, B. S., Krathwohl, D. R., & Masia, B. B. (1964). II: handbook II: affective domain. David McKay, New York.
29.Braßler, M., & Schultze, M. (2021). Students’ innovation in education for sustainable development—A longitudinal study on interdisciplinary vs. Monodisciplinary learning. Sustainability, 13(3), 1322.
30.Bybee, R. W. (2013). The case for STEM education: Challenges and opportunities.
31.Chamberlin, K., Yasué, M., & Chiang, I. C. A. (2018). The impact of grades on student motivation. Active Learning in Higher Education, 1469787418819728.
32.Chang, Y. S. (2021). Applying the arcs motivation theory for the assessment of ar digital media design learning effectiveness. Sustainability, 13(21), 12296.
33.Close, D. (2009). Fair grades. Teaching Philosophy, 32(4), 361-398.
34.Dincer, B., & Ataman, H. (2020). The effect of high reality simulation on nursing students’ knowledge, satisfaction, and self-confidence levels in learning. International Journal of Caring Sciences, 13(2), 894.
35.Fan, J., Gómez‐Miñambres, J., & Smithers, S. (2020). Make it too difficult, and I'll give up; let me succeed, and I'll excel: The interaction between assigned and personal goals. Managerial and Decision Economics, 41(6), 964-975.
36.Feltz, D. L. (2007). Self-confidence and sports performance.
37.Gao, X., Li, P., Shen, J., & Sun, H. (2020). Reviewing assessment of student learning in interdisciplinary STEM education. International Journal of STEM Education,7(1), 1-14.
38.Goksu, I., & Islam Bolat, Y. (2021). Does the ARCS motivational model affect students’ achievement and motivation? A meta‐analysis. Review of Education, 9(1), 27-52.
39.Greener, S. (2018). Stop daydreaming, pay attention. Interactive Learning Environments, 26(3), 287-288.
40.Hallam, S. (2004). Current findings - homework: The evidence. British Educational Research Association Research Intelligence, 89, 27-29.
41.Hanif, S., Wijaya, A. F. C., & Winarno, N. (2019). Enhancing Students' Creativity through STEM Project-Based Learning. Journal of science Learning, 2(2), 50-57.
42.Hidi, S., & Renninger, K. A. (2006). The four-phase model of interest development. Educational psychologist, 41(2), 111-127.
43.Jonathan, L. I. N. (2022). The Effects of Gamification Instruction on the Roles of Perceived Ease of Learning, Enjoyment, and Useful Knowledge toward Learning Attitude. TOJET: The Turkish Online Journal of Educational Technology, 21(2).
44.Julià, C., & Antolí, J. Ò. (2019). Impact of implementing a long-term STEM-based active learning course on students’ motivation. International Journal of Technology and Design Education, 29(2), 303-327.
45.Kang, N. H. (2019). A review of the effect of integrated STEM or STEAM (science, technology, engineering, arts, and mathematics) education in South Korea. Asia-Pacific Science Education, 5(1), 1-22.
46.Keller, J. M. (1979). Motivation and instructional design: A theoretical perspective. Journal of instructional development, 26-34.
47.Keller, J. M. (1983). Motivational design of instruction. Instructional design theories and models: An overview of their current status, 1(1983), 383-434.
48.Keller, J. M. (2010). Motivational design research and development. In Motivational design for learning and performance (pp. 297-323). Springer, Boston, MA.
49.Lam, K. F. T., Wang, T. H., Vun, Y. S., & Ku, N. (2019). Developing critical thinking in a STEAM classroom. In Proceedings of the International Congress on Educational and Technology in Sciences (pp. 82-90).
50.Lam, K. F. T., Wang, T. H., Vun, Y. S., & Ku, N. (2019, December). Using DDMT teaching model to cultivate critical thinking in a STEAM classroom. In International Congress on Education and Technology in Sciences (pp. 47-57). Springer, Cham.
51.Lens, W., & Vansteenkiste, M. (2020). Motivation: About the “why” and “what for” of human behavior. In Psychological Concepts (pp. 249-270). Psychology Press.
52.Li, Y., Wang, K., Xiao, Y., & Froyd, J. E. (2020). Research and trends in STEM education: A systematic review of journal publications. International Journal of STEM Education, 7(1), 1-16.
53.Lin, C. L., & Tsai, C. Y. (2021). The effect of a pedagogical STEAM model on students’ project competence and learning motivation. Journal of Science Education and Technology, 30(1), 112-124.
54.Ma, L., & Lee, C. S. (2021). Evaluating the effectiveness of blended learning using the ARCS model. Journal of computer assisted learning, 37(5), 1397-1408.
55.Master, A. (2021). Gender stereotypes influence children’s STEM motivation. Child Development Perspectives, 15(3), 203-210.
56.Master, A., Cheryan, S., Moscatelli, A., & Meltzoff, A. N. (2017). Programming experience promotes higher STEM motivation among first-grade girls. Journal of experimental child psychology, 160, 92-106.
57.McComas, W. F., & Burgin, S. R. (2020). A critique of “STEM” education. Science & Education, 29(4), 805-829.
58.Merugu, S., Archana Reddy, R., Pamulaparthi, R. R., & Juluru, T. K. (2022). Active Learning Pedagogy—Impact on Student Engagement, Scholastic Performance in STEM Courses. In Microelectronics, Communication Systems, Machine Learning and Internet of Things (pp. 651-666). Springer, Singapore.
59.Moneva, J., & Tribunalo, S. M. (2020). Students’ level of self-confidence and performance tasks. Asia Pacific Journal of Academic Research in Social Sciences, 5(1), 42-48.
60.Moore, T. J., Glancy, A. W., Tank, K. M., Kersten, J. A., Smith, K. A., & Stohlmann, M. S. (2014). A framework for quality K-12 engineering education: Research and development. Journal of pre-college engineering education research (J-PEER), 4(1), 2.
61.National Research Council. (2013). Next generation science standards: For states, by states.
62.NGSS Lead States (2013). Next Generation Science Standards: For States, By States. Washington, DC: The National Academies Press.
63.Paolini, A. (2015). Enhancing Teaching Effectiveness and Student Learning Outcomes. Journal of effective teaching, 15(1), 20-33.
64.Prata, J., Coelho, R., & Lawson, W. (2018). How the attitude of acceptance, enthusiasm and learning through motivation affects brain development in children with autism: a literature review. Journal of Intellectual Disability- Diagnosis and Treatment, 6(1), 14-24.
65.Refat, N., Kassim, H., Rahman, M. A., & Razali, R. B. (2020). Measuring student motivation on the use of a mobile assisted grammar learning tool. PloS one, 15(8), e0236862.
66.Rodriguez, S., Regueiro, B., Piñeiro, I., Estévez, I., & Valle, A. (2020). Gender differences in mathematics motivation: Differential effects on performance in primary education. Frontiers in psychology, 10, 3050.
67.Roehrig, G. H., Dare, E. A., Ring-Whalen, E., & Wieselmann, J. R. (2021). Understanding coherence and integration in integrated STEM curriculum. International Journal of STEM Education, 8(1), 1-21.
68.Rosedi, S. R. M. (2021). Evaluating students’ level of motivation in learning maritime English during the Movement Control Order (MCO) period: Preliminary findings on online distance learning of an STCW course. Journal of Research, Policy & Practice of Teachers and Teacher Education, 11(2), 139-151.
69.Sanders, M. E. (2008). Stem, stem education, stemmania.
70.Santos Garduño, H. A., Esparza Martínez, M. I., & Portuguez Castro, M. (2021). Impact of virtual reality on student motivation in a High School Science Course. Applied Sciences, 11(20), 9516.
71.Seage, S. J., & Türegün, M. (2020). The Effects of Blended Learning on STEM Achievement of Elementary School Students. International Journal of Research in Education and Science, 6(1), 133-140.
72.Sides, J. D., & Cuevas, J. A. (2020). Effect of goal setting for motivation, self- Efficacy, and performance in Elementary mathematics. International Journal of Instruction, 13(4), 1-16.
73.Thawabieh, A. M. (2017). A Comparison between Students' Self-Assessment and Teachers' Assessment. Journal of curriculum and Teaching, 6(1), 14-20.
74.Thibaut, L., Ceuppens, S., De Loof, H., De Meester, J., Goovaerts, L., Struyf, A., ... Depaepe, F. (2018). Integrated STEM education: A systematic review of instructional practices in secondary education. European Journal of STEM Education, 3(1), 2.
75.Tiwari, K. S., Khamari, J., & Sahu, N. (2014). A comparison on the span of attention with meaningful and nonmeaningful words. Journal of Research and Method in Education, 33-7.
76.Tohidi, H., & Jabbari, M. M. (2012). The effects of motivation in education. Procedia- Social and Behavioral Sciences, 31, 820-824.
77.Toli, G., & Kallery, M. (2021). Enhancing student interest to promote learning in science: The case of the concept of energy. Education Sciences, 11(5), 220.
78.Tuan*, H. L., Chin, C. C., & Shieh, S. H. (2005). The development of a questionnaire to measure students' motivation towards science learning. International journal of science education, 27(6), 639-654.
79.Vennix, J., den Brok, P., & Taconis, R. (2018). Do outreach activities in secondary STEM education motivate students and improve their attitudes towards STEM? International Journal of Science Education, 40(11), 1263-1283.
80.Vorhaus, J., Duckworth, K., Budge, D., & Feinstein, L. (2008). The social and personal benefits of learning: A summary of key research findings.
81.Wang, T. H. (2019). Effective Interdisciplinary STEM/STEAM Education: DDMT Teaching Model and WACEL system for e. Assessment.
82.Wang, T. H., Lim, K. Y., Lavonen, J., & Clark-Wilson, A. (2019). Maker-centred science and mathematics education: lenses, scales and contexts. International Journal of Science and Mathematics Education, 17(1), 1-11.
83.Weerasinghe, I. S., & Fernando, R. L. (2017). Students' satisfaction in higher education. American journal of educational research, 5(5), 533-539.
84.Wenkel, S., Alhazmi, K., Liiv, T., Alrshoud, S., & Simon, M. (2021). Confidence score: The forgotten dimension of object detection performance evaluation. Sensors, 21(13), 4350.
85.Wilmot, D., & Keller, F. (2020). Modelling suspense in short stories as uncertainty reduction over neural representation. arXiv preprint arXiv:2004.14905.
86.Wisniewski, B., Zierer, K., & Hattie, J. (2020). The power of feedback revisited: A meta-analysis of educational feedback research. Frontiers in Psychology, 10, 3087.
87.Wu, C. H., Liu, C. H., & Huang, Y. M. (2022). The exploration of continuous learning intention in STEAM education through attitude, motivation, and cognitive load. International Journal of STEM Education, 9(1), 1-22.
88.Yeo, J. H., Cho, I. H., Hwang, G. H., & Yang, H. H. (2022). Impact of gender and prior knowledge on learning performance and motivation in a digital game-based learning biology course. Educational technology research and development, 70(3), 989-1008.