研究生: |
鄧克頎 Teng, Ko-Chi. |
---|---|
論文名稱: |
單晶混合陽離子鈣鈦礦的合成與分析 Synthesis and Analysis of Mixed Cation Perovskite Single Crystal |
指導教授: |
衛子健
Wei, Tzu-Chien |
口試委員: |
王潔
Wang, Jane 吳茂松 Wu, Mao-Sung |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 77 |
中文關鍵詞: | 單晶鈣鈦礦 、升溫析晶法 、單晶混合陽離子鈣鈦礦 、單晶鈣鈦礦薄片 |
外文關鍵詞: | perovskite single crystal, inverse temperature crystallization, mixed cation perovskite single crystal FAXMA(1-X)PbI3, perovskite single crystal wafer |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鹵化有機金屬鈣鈦礦因具有相當優異的光吸收係數、載子壽命、電子與電動遷移率等特性,而受到了學術界的矚目,開始被應用於太陽能電池中,作為高效吸光層材料。但截至目前為止,幾乎所有的鈣鈦礦太陽能電池中的鈣鈦礦材料皆屬多晶薄膜,其晶界容易導致載子的再結合,是影響其光電轉換效率與元件穩定性的瓶頸之一。相較於多晶薄膜,單晶鈣鈦礦因晶界與表面缺陷相當稀少,因此具有更優異的光電性質與穩定性,若能以其作為光吸收層將有機會獲得更高的光電轉換效率。
但目前研究最廣泛的鈣鈦礦MAPbI3由於陽離子MA+平均半徑值較小而導致晶體成為不穩定的扭曲結構,水氣等外在因子容易造成晶體結構的瓦解。因此為了同時解決多晶MAPbI3晶界導致載子再結合和MAPbI3材料不穩定的問題,本研究利用升溫析晶法在溶液中合成出不同FA+((NH2)2CH+)/MA+比例的單晶混合陽離子鈣鈦礦FAXMA(1-X)PbI3,並利用多種儀器進行性質分析,我們發現當單晶FAXMA(1-X)PbI3對於濕度有較好的穩定性,代表其更適合做為長效鈣鈦礦太陽能電池中的吸光材料。
另外,溶液中合成出的單晶鈣鈦礦因為厚度的因素限制了其應用光伏元件的發展性,為了取得單晶鈣鈦礦薄片,本研究另設計出可以簡易合成厚度為0.17mm單晶MAPbI3 wafer的培養槽。並結合FAXMA(1-X)PbI3前驅液與wafer培養槽,合成單晶FAXMA(1-X)PbI3 wafer並量測其電性,並與MAPbI3做比較。
The organic-inorganic hybrid perovskites have been receiving considerable attention in various optoelectronic applications due to its superior characteristics including high absorption coefficient, direct bandgap, long carrier lifetime, and high hole and electron mobility. However, current perovskite solar cells are all based on polycrystalline perovskite thin films, which contain plenty of grain boundaries and surface defects, rendering noticeable carrier loss and device instability. It was reported that single crystalline perovskite possesses superior optoelectronic properties and stability due to less grain boundaries and surface defects.
However, the widely explored MAPbI3 is still unstable due to its distorted crystal structure caused by small MA+ ions. It was found that the crystal structure is weak against moisture. Herein we added formamidinium ions (FA+) ions in the MA+ incubation solution and successfully synthesized MAXFA(1-X)PbI3 single crystal by means of inverse temperature crystallization. We examined the mixed cation single crystals by several instruments and found they possess better stability under high humidity.
In addition, the applications on MSCs are limited by the thickness of crystals. Herein, we designed a incubating tank to synthesize large area MAPbI3 wafer with 0.17mm in thickness. We also synthesized MAXFA(1-X)PbI3 wafer and measured its electrical properties comparing to MAPbI3.
[1] International Energy Statistics-Total Electricity Net Consumption. Available: http://www.eia.gov/cfapps/ipdbproject/iedindex3.cfm?tid=2&pid=2&aid=2&cid=ww,&syid=2004&eyid=2011&unit=BKWH
[2] Global Energy Flows in watts / m2 / sec. Available: http://www.hydrogenambassadors.com/background/global-energy-flows.php
[3] B. O'regan and M. Grätzel, "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO 2 films," nature, vol. 353, pp. 737-740, 1991.
[4] S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B. F. Curchod, N. Ashari-Astani, et al., "Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers," Nature chemistry, vol. 6, pp. 242-247, 2014.
[5] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, "Organometal halide perovskites as visible-light sensitizers for photovoltaic cells," Journal of the American Chemical Society, vol. 131, pp. 6050-6051, 2009.
[6] N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo, et al., "Compositional engineering of perovskite materials for high-performance solar cells," Nature, vol. 517, pp. 476-480, 2015.
[7] Research Cell Efficiency Records. Available: http://www.nrel.gov/ncpv/
[8] Perovskite introduction and basic perovskite information. Available: https://www.perovskite-info.com/perovskite-introduction-and-basic-perovskite-information
[9] 洪承佑, "液態鈣鈦礦太陽能電池效能衰減及腐蝕現象的研究," 碩士論文, vol. 國立清華大學, 2015.
[10] N.-G. Park, "Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell," The Journal of Physical Chemistry Letters, vol. 4, pp. 2423-2429, 2013.
[11] J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, and N.-G. Park, "6.5% efficient perovskite quantum-dot-sensitized solar cell," Nanoscale, vol. 3, pp. 4088-4093, 2011.
[12] M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, "Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites," Science, vol. 338, pp. 643-647, 2012.
[13] Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, et al., "Electron-hole diffusion lengths> 175 μm in solution-grown CH3NH3PbI3 single crystals," Science, vol. 347, pp. 967-970, 2015.
[14] D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, et al., "Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals," Science, vol. 347, pp. 519-522, 2015.
[15] Z. Xiao, Q. Dong, C. Bi, Y. Shao, Y. Yuan, and J. Huang, "Solvent annealing of perovskite‐induced crystal growth for photovoltaic‐device efficiency enhancement," Advanced Materials, vol. 26, pp. 6503-6509, 2014.
[16] Y. Liu, Z. Yang, D. Cui, X. Ren, J. Sun, X. Liu, et al., "Two‐Inch‐Sized Perovskite CH3NH3PbX3 (X= Cl, Br, I) Crystals: Growth and Characterization," Advanced Materials, vol. 27, pp. 5176-5183, 2015.
[17] 刘阳, 付现伟, 赵天宇, 廉刚, 董宁, 宋思德, et al., "利用原位红外光谱研究钙钛矿复合半导体 CH 3 NH 3 PbI 3 的稳定性," 高等学校化学学报, vol. 37, pp. 1605-1610, 2016.
[18] N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, "Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells," Nature materials, vol. 13, pp. 897-903, 2014.
[19] J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, et al., "Sequential deposition as a route to high-performance perovskite-sensitized solar cells," Nature, vol. 499, pp. 316-319, 2013.
[20] Y. Dang, Y. Liu, Y. Sun, D. Yuan, X. Liu, W. Lu, et al., "Bulk crystal growth of hybrid perovskite material CH 3 NH 3 PbI 3," CrystEngComm, vol. 17, pp. 665-670, 2015.
[21] Z. Lian, Q. Yan, T. Gao, J. Ding, Q. Lv, C. Ning, et al., "Perovskite CH3NH3PbI3 (Cl) Single Crystals: Rapid Solution Growth, Unparalleled Crystalline Quality, and Low Trap Density toward 108 cm–3," Journal of the American Chemical Society, vol. 138, pp. 9409-9412, 2016.
[22] J. M. Kadro, K. Nonomura, D. Gachet, M. Grätzel, and A. Hagfeldt, "Facile route to freestanding CH3NH3PbI3 crystals using inverse solubility," Scientific reports, vol. 5, 2015.
[23] M. I. Saidaminov, A. L. Abdelhady, G. Maculan, and O. M. Bakr, "Retrograde solubility of formamidinium and methylammonium lead halide perovskites enabling rapid single crystal growth," Chemical Communications, vol. 51, pp. 17658-17661, 2015.
[24] M. I. Saidaminov, A. L. Abdelhady, B. Murali, E. Alarousu, V. M. Burlakov, W. Peng, et al., "High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization," Nature communications, vol. 6, 2015.
[25] K. Yan, M. Long, T. Zhang, Z. Wei, H. Chen, S. Yang, et al., "Hybrid halide perovskite solar cell precursors: Colloidal chemistry and coordination engineering behind device processing for high efficiency," Journal of the American Chemical Society, vol. 137, pp. 4460-4468, 2015.
[26] J.-H. Lee, N. C. Bristowe, P. D. Bristowe, and A. K. Cheetham, "Role of hydrogen-bonding and its interplay with octahedral tilting in CH 3 NH 3 PbI 3," Chemical Communications, vol. 51, pp. 6434-6437, 2015.
[27] G. Niu, W. Li, F. Meng, L. Wang, H. Dong, and Y. Qiu, "Study on the stability of CH 3 NH 3 PbI 3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells," Journal of Materials Chemistry A, vol. 2, pp. 705-710, 2014.
[28] J. A. Christians, P. A. Miranda Herrera, and P. V. Kamat, "Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air," Journal of the American Chemical Society, vol. 137, pp. 1530-1538, 2015.
[29] J. Yang, B. D. Siempelkamp, D. Liu, and T. L. Kelly, "Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques," ACS nano, vol. 9, pp. 1955-1963, 2015.
[30] G. Kieslich, S. Sun, and A. K. Cheetham, "Solid-state principles applied to organic–inorganic perovskites: new tricks for an old dog," Chemical Science, vol. 5, pp. 4712-4715, 2014.
[31] Q. Han, S. H. Bae, P. Sun, Y. T. Hsieh, Y. M. Yang, Y. S. Rim, et al., "Single crystal formamidinium lead iodide (FAPbI3): Insight into the structural, optical, and electrical properties," Advanced Materials, 2016.
[32] T. M. Koh, K. Fu, Y. Fang, S. Chen, T. Sum, N. Mathews, et al., "Formamidinium-containing metal-halide: an alternative material for near-IR absorption perovskite solar cells," The Journal of Physical Chemistry C, vol. 118, pp. 16458-16462, 2013.
[33] W. Shockley and H. J. Queisser, "Detailed balance limit of efficiency of p‐n junction solar cells," Journal of applied physics, vol. 32, pp. 510-519, 1961.
[34] A. Binek, F. C. Hanusch, P. Docampo, and T. Bein, "Stabilization of the trigonal high-temperature phase of formamidinium lead iodide," The journal of physical chemistry letters, vol. 6, pp. 1249-1253, 2015.
[35] Y. Zhang, G. Grancini, Y. Feng, A. M. Asiri, and M. K. Nazeeruddin, "Optimization of Stable Quasi-Cubic FA x MA1–x PbI3 Perovskite Structure for Solar Cells with Efficiency beyond 20%," ACS Energy Letters, vol. 2, pp. 802-806, 2017.
[36] Y. Huang, L. Li, Z. Liu, H. Jiao, Y. He, X. Wang, et al., "The intrinsic properties of FA (1− x) MA x PbI 3 perovskite single crystals," Journal of Materials Chemistry A, vol. 5, pp. 8537-8544, 2017.
[37] W.-G. Li, H.-S. Rao, B.-X. Chen, X.-D. Wang, and D.-B. Kuang, "A formamidinium–methylammonium lead iodide perovskite single crystal exhibiting exceptional optoelectronic properties and long-term stability," Journal of Materials Chemistry A, vol. 5, pp. 19431-19438, 2017.
[38] X. R. Yucheng Liu, Jing Zhang, Zhou Yang, Dong Yang, Fengyang Yu,, C. Z. Jiankun Sun, Zhun Yao, Bo Wang, Qingbo Wei, Fengwei Xiao,, and H. D. Haibo Fan, Liangping Deng & Shengzhong (Frank) Liu, "120 mm Single-crystalline perovskite and wafers: towards viable applications," Science China Chemistry, vol. 10.1007/s11426-017-9081-3, 2017.
[39] Y. Liu, Y. Zhang, Z. Yang, D. Yang, X. Ren, L. Pang, et al., "Thinness‐and Shape‐Controlled Growth for Ultrathin Single‐Crystalline Perovskite Wafers for Mass Production of Superior Photoelectronic Devices," Advanced Materials, vol. 28, pp. 9204-9209, 2016.
[40] H.-S. Rao, B.-X. Chen, X.-D. Wang, D.-B. Kuang, and C.-Y. Su, "A micron-scale laminar MAPbBr 3 single crystal for an efficient and stable perovskite solar cell," Chemical Communications, vol. 53, pp. 5163-5166, 2017.
[41] Z. Chen, Q. Dong, Y. Liu, C. Bao, Y. Fang, Y. Lin, et al., "Thin single crystal perovskite solar cells to harvest below-bandgap light absorption," Nature communications, vol. 8, p. 1890, 2017.
[42] 林麗娟, "X光繞射原理及其應用," 工業材料雜誌, vol. vol. 86, pp. 100-109, 1994.
[43] 動態光散射儀裝置圖. Available: http://pssnicomp.cn/product_lljlist.aspx
[44] G. Grancini, V. D'Innocenzo, E. Dohner, N. Martino, A. S. Kandada, E. Mosconi, et al., "CH 3 NH 3 PbI 3 perovskite single crystals: surface photophysics and their interaction with the environment," Chemical Science, vol. 6, pp. 7305-7310, 2015.
[45] Y. Liu, J. Sun, Z. Yang, D. Yang, X. Ren, H. Xu, et al., "20‐mm‐Large Single‐Crystalline Formamidinium‐Perovskite Wafer for Mass Production of Integrated Photodetectors," Advanced Optical Materials, vol. 4, pp. 1829-1837, 2016.