簡易檢索 / 詳目顯示

研究生: 盧亭妤
論文名稱: 在非獨立設限及測量偏誤下的追蹤式計數資料分析
panel count data under informative censoring with measurement error
指導教授: 鄭又仁
口試委員: 趙蓮菊
黃冠華
學位類別: 碩士
Master
系所名稱: 理學院 - 統計學研究所
Institute of Statistics
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 44
中文關鍵詞: 測量誤差區間設限
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文主要研究為使用半參數模型來描述當復發事件為非獨立區間設限觀測時間(稱為追蹤式計數資料)以及具有測量誤差時,
    如何估計模型的共變數的參數。區間設限時間指的是在兩次的實驗觀測時間之間具有事件的發生,但是我們無法得知事件的真實發生時間,
    而非獨立區間設限則是指實驗對象的實驗觀測時間與事件本身有關。
    復發事件為,在一觀測時間內,一觀測對象,重複發生同一事件(如:腫瘤復發)。
    而本文中所使用的資料型態區間設限觀測時間的復發事件又稱為追蹤式計數資料(panel count data)。
    本論文處理非獨立區間設限模型的方式與 Huang et al. (2006) 提出方法類似,但我們多加入共變數有測量誤差的情形進行討論,
    並且分別使用三種校正方法分別為 : 迴歸校正法 、 模擬外插法 、 分數函數校正法來校正共變數的測量誤差。
    使用不同的模擬生成資料來比較校正法在非獨立區間設限以及考慮測量誤差下的結果,分析結果顯示在處理非獨立區間設限問題時,
    如果我們忽略測量誤差結果有較大的偏誤,而分數函數校正法的共變數參數估計量偏誤最小,且在不同測量誤差變異下,表現相對穩定,
    模擬外插法在誤差變異放大時,會出現嚴重的偏誤情形,而迴歸校正法雖然表現不錯,但偏誤都較分數函數校正法略大。
    最後我們利用以上模型來分析膀胱腫瘤復發資料,並考慮腫瘤大小有不同程度測量誤差時的估計結果,
    結果發現當測量誤差變大時,各估計量的結果差異越趨明顯,但是皆可看出 Thiotepa 群的腫瘤復發次數較少。


    第一章 前言 第二章 文獻回顧 第三章 模型方法 第四章 數值模擬 第五章 實例分析 第六章 結論 第七章 附錄 附表 參考文獻

    1] Anderson, P.K. and Gill, R.D. (1982). Cox's regression model
    for counting processes: A large sample study. The Analysis
    of Statistics, 10(4):1100-1120.
    [2] Balshaw, R.F. and Dean, C.B. (2002). A semiparametric
    model for the anlaysis of recurrent-event panel count data,
    Biometrics 58,324-31.
    [3] Byar, D.P. (1980). The veterans administration study of
    chemoprophylaxis for recurrent stage I bladder tumours:
    comparisons of placebo,pyridoxine,and topical thiotepa.In
    Bladder tumours and Other Topics in Urological Oncology,
    Ed.M.Pavone-Macaluso,P.H.Smith and F.Edsmyr,pp.363-
    70.New York:Plenum.
    [4] Carroll, R.J., Ruppert,D., Stefanski, L.A., and Crainiceanu,
    C.M. (2006). Measurement Error In Nonlinear Models: A
    Modern Perspeztive.Chapman & Hall/CRC.
    [5] Clayton, D.G. (1978). A model for association ib bivariate
    life tables and its application in epidemiological studies of
    familial tendency in chronic disease incidence.Biometrika,
    65(1):141-151.
    [6] Cox, D.R. (1972). Regression models and life-tables.Journal
    of the Royal Statistical Society, series B, 34(2):187-220.
    40
    [7] Cox, D.R. (1975). Partial likelihood.Biometrika, 62(2):269-
    276.
    [8] Efron, B. (1977). The eciency of cox's likelihood function
    for censored data. Journal of the American Statistical Asso-
    ciation, 72(359):557-565.
    [9] Finkelstein, D.M. and Wolfe, R.A. (1985). A semiparametric
    model for regression analysis of interval-censored failure time
    data. Biometrics, 41,933-945.
    [10] Fuller, W.A. (2008). Measurement Error Models.John Wiley
    & Sons,Inc.
    [11] Groeneboom, P. and Wellner, J.A. (1992). Information
    bounds and nonparametric maximum likelihood estimation.
    DMV Seminar, Band 19,Birkhauser, New York.
    [12] Huang, J. and Wellner, J.A. (1997). Interval censored survival
    data: a review of recent progress. Proceedings of the
    First Seattle Symposium in Biostatistics: Survival Analysis,
    eds. Lin, D. Fleming, T. Springer-Verlag, New York,123-169.
    [13] Huang, J. (1996). Ecient estimation for the proportional
    hazards model with interval censoring. The Annals of Statis-
    tics, 24,540-568.
    [14] Huang, C.Y., Wang, M.C. and Zhang, Y. (2006). Analysis
    panel count data with informative observation times.
    Biometrika, 93,4,763-775.
    41
    [15] Hoel, D.G. and Walburg, H.E. (1972). Statistical analysis of
    survival experiments. Journal of National Cancer Institute,
    49,361-372.
    [16] Kim, M.Y., De Gruttola, V. and Lagakos, S.W. (1993). Analyzing
    doubly censored data with covariates, with application
    to AIDS.Biometrics, 49,13-22.
    [17] Kuchenho , H. and Caroll, R.J. (1997). Segmented regression
    with errors in predictors: Semi-parametric and parametric
    methods.Statistics in Medicine, 16(2):169-188.
    [18] Kuchenho , H., Mwalili, S.M., and Lesa re, E. (2006). A
    general method for dealing with misclassi cation in regression:
    The misclassi cation simex.Biometrics, 62(1):85-96.
    [19] Lawless, J.F. and Zhan, M. (1998). Analysis of intervalgrouped
    recurrent-event data using piecewise constant rate
    functions. The Canadian Journal of Statistics, 26,549-565.
    [20] Nakamura, T. (1990). Corrected score function for errors-invariables
    models: Methodology and application to generalized
    linear models.Biometrics, 48(3):829-838.
    [21] Nakamura, T. (1992). Proportional hazards model with
    covariates subject to measurement error. Biometrics,
    48(3):829-838.
    [22] Oakes, D. (1977). The asymptotic information in censored
    survival data.Biometrika, 64(3):441-448.
    42
    [23] Pepe, M.S. and Cai, J. (1993). Some graphical displays and
    marginal regression analyses for recurrent failure times and
    time dependent covariates.Journal of the American Statisti-
    cal Association, 88(423):811-820.
    [24] Prentice, R.L. (1982). Covariate measurement errors
    and parameter estimation in a failure time regression
    model.Biometrika, 69(2):331-342.
    [25] Song, X. and Huang, Y. (2005), On Corrected Score Approach
    for Proportional Hazaeds Model with Covariate Measurement
    Error. Biometrics, 61(3):702-14.
    [26] Sun, J. (1998). Interval censoring. Encyclopedia of Biostatis-
    tics,John Wiley,First Edition,2090-2095.
    [27] Sun, J. (2005). Interval censoring. Encyclopedia of Biostatis-
    tics,John Wiley,Second Edition,2603-2609.
    [28] Sun, J.G, (2006). The statistical Analysis of Intervalcensored
    Failure Time Data.Springer.
    [29] Sun, J. and Wei, L.J. (2000). Regression analysis of panel
    count data with covariate-dependent observation and censoring
    times. Journal of the Royal Statistical Society, B62,293-
    302
    [30] Stefanski, L.A. and Cook, J.R. (1995). Simulationextrapolation:
    The measurement error jackknife.Journal of
    the American Statistical Association, 90(432):1247-1256.
    43
    [31] Thall, P.F. and Lachin, J.M. (1988). Analysis of recurrent
    events: nonparametric methods for randominterval count
    data.Journal of the American Statistical Association, 83,339-
    47.
    [32] Turnbull, B.W. (1976). The empirical distribution function
    with arbitrarily grouped, censored and truncated
    data.Journal of the Royal Statistical Society, B38,290-5
    [33] Vaupel, J., Manton, K., and Stallard, E. (1979). The impact
    of heterogeneity in individual frailty on the dynamics of
    mortality.Demography, 16:439-454.
    [34] Wang, M.C. and Chang, S.H. (1999). Nonparametric estimation
    of a recurrent survival function.Journal of the American
    Statistical Association, 94(445):146-153.
    [35] Wang, M.C., Qin, J. and Chiang, C.T. (2001). Analyzing
    recurrent event data with informative censoring.Journal of
    the American Statistical Association, 96(455):1057-1065.
    [36] Wang, C.Y., Hsu, L., Feng, Z.D., and Prentice, R.L. (1997).
    Regression calibration in failure time regression, Biometrics,
    53,131-145.
    [37] Zhang, Y. (2002). A semiparametric pseudolikelihood estimation
    method for panel count data. Biometrika, 89,39-48.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE