研究生: |
朱昭武 Chu, Chao-Wu |
---|---|
論文名稱: |
非晶形二氧化鈦微米球應用於選擇性阻隔近紅外光之研究 Amorphous TiO2 Microspheres as Near-infrared Radiation Selective Blocking Material |
指導教授: |
李紫原
Lee, Chi-Young |
口試委員: |
徐文光
Hsu, Wen-Kuang 裘性天 Chiu, Hsin-Tien |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 71 |
中文關鍵詞: | 非晶形二氧化鈦 、微米球 、米氏散射 、溶膠凝膠法 、近紅外光阻隔 |
外文關鍵詞: | amorphous TiO2, microsphere, Mie scattering, sol-gel process, infrared radiation blocking |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用溶膠凝膠法,以四異丙基鈦為前驅物,並加入辛酸形成鈦的錯合物,合成出均勻且圓的非晶形之二氧化鈦實心球,粒徑從亞微米級至微米級。基於米氏散射理論,粒徑約1 μm之微米球能對近紅外光產生散射,阻隔近紅外線之熱輻射,進而降低溫度,使二氧化鈦微米球具備隔熱性質。本研究合成非晶形之二氧化鈦實心球,並將其應用於隔熱鍍層之材料。
實驗上,將粒徑1300 nm非晶形之二氧化鈦微米球及市售二氧化鈦(P25)鍍在玻璃基板上,並以UV-Vis-NIR光譜圖及溫度量測曲線,分析材料對近紅外光阻隔與隔熱能力的表現。根據結果顯示,鍍在玻璃基板的二氧化鈦微米球,在近紅外光與可見光波段之穿透率分別約為45% 及60%,而P25則約為75% 及60%。然而,溫度量測是從25°C持續照光加熱1小時,二氧化鈦微米球與P25溫度上升的幅度有著明顯的差異,最終溫度分別約為43°C及52°C。綜合這些結果,本研究合成之二氧化鈦微米球在隔熱材料的應用上,具有相當大的發展潛力,能夠有效抑制室內溫度的提升,達成節能的功效。
Amorphous TiO2 spheres with sizes ranging from submicroscale to microscale were synthesized by sol-gel process of titanium isopropoxide (TTIP) with octanoic acids. Based on Mie scattering theory, microspheres with diameter about 1 μm scatter near-infrared (NIR) selectively, resulting in thermo-temperature reduction, which leads to significantly improved insulation properties. In this work, amorphous TiO2 spheres were fabricated and applied to thermal insulation coating materials.
With spreading amorphous TiO2 microspheres (diameter of ~1.3 μm) and commercial TiO2 P25 on glass, the heat insulation performance was examined by UV-Vis-NIR spectrum. The results show that the optical transmittances in near-infrared and visible light region are 45% and 60% respectively for TiO2 microsphere coated glass, whereas, for commercial TiO2 P25 coated glass are 75% and 60% respectively, which indicate the heat insulation performance of TiO2 microsphere is better than that of commercial TiO2 P25. Furthermore, heat shielding test revealed different temperature between amorphous TiO2 microspheres and P25 (~43°C and ~52°C) after heating from ~25°C for 1 hour continuously. According to these results, amorphous TiO2 microspheres could be a promising thermal insulation material to improve indoor thermal environment effectively.
1. Fujishima, Akira, and Kenichi Honda. "Electrochemical photolysis of water at a semiconductor electrode." Nature 238.5358 (1972): 37.
2. Daghrir, Rimeh, Patrick Drogui, and Didier Robert. "Modified TiO2 for environmental photocatalytic applications: a review. "Industrial & Engineering Chemistry Research 52.10 (2013): 3581-3599.
3. Zhonghai Zhang, Lianbin Zhang, Mohamed Nejib Hedhili, Hongnan Zhang, and Peng Wang. "Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting." Nano Letters 13.1 (2012): 14-20.
4. Wenxi Guo, Xinyu Xue, Sihong Wang, Changjian Lin, and Zhong Lin Wang. "An integrated power pack of dye-sensitized solar cell and Li battery based on double-sided TiO2 nanotube arrays." Nano Letters 12.5 (2012): 2520-2523.
5. Xiaoyong Wu, Shu Yin, Dongfeng Xue, Sridhar Komarneni, and Tsugio Sato. "A CsxWO3/ZnO nanocomposite as a smart coating for photocatalytic environmental cleanup and heat insulation." Nanoscale 7.40 (2015): 17048-17054.
6. Yaw Nan Shieh, Ping Chen Hsieh, Chang Jin Chen. "Fabrication of antimony doped tin oxide (ATO) films for heat insulated glass coating." Advanced Materials Research. (2011) Vol. 168. Trans Tech Publications.
7. Dagang Miao, Shouxiang Jiang, Songmin Shang, and Zhuoming Chen. "Highly transparent and infrared reflective AZO/Ag/AZO multilayer film prepared on PET substrate by RF magnetron sputtering." Vacuum 106 (2014): 1-4.
8. Jing Xiao Liu, Fei Shi, Xiao Li Dong, Qiang Xu, Shu Yin, and Tsugio Sato. "Nanocrystalline CsxWO3 particles: Effects of N2 annealing on microstructure and near-infrared shielding characteristics." Materials Characterization 84 (2013): 182-187.
9. Min Chiao Tsai, Tsung Lin Tsai, Cheng Te Lin, Rei Jei Chung, Hwo Shuenn Sheu, Hsin Tien Chiu, and Chi Young Lee. "Tailor made mie scattering color filters made by size-tunable titanium dioxide particles." The Journal of Physical Chemistry C 112.7 (2008): 2697-2702.
10. Min Chiao Tsai, Jeng Yi Lee, Po Chin Chen, Yuan Wei Chang, Ya Chen Chang, Min Han Yang, Hsin Tien Chiu, I Nan Lin, Ray Kuang Lee, and Chi Young Lee. "Effects of size and shell thickness of TiO2 hierarchical hollow spheres on photocatalytic behavior: An experimental and theoretical study." Applied Catalysis B: Environmental 147 (2014): 499-507.
11. Arghya Narayan Banerjee. "The design, fabrication, and photocatalytic utility of nanostructured semiconductors: focus on TiO2-based nanostructures." Nanotechnology, Science and Applications 4 (2011): 35.
12. Joseph R. Smyth, and David L. Bish. (1988). Crystal Structures and Cation Sites of the Rock-Forming Minerals. Boston: Allen & Unwin.
13. C. Sanchez, J. Livage, M. Henry, and F. Babonneau. "Chemical modification of alkoxide precursors." Journal of Non-Crystalline Solids 100.1-3 (1988): 65-76.
14. Douglas M. Mattox. "Sol-gel derived, air-baked indium and tin oxide films." Thin Solid Films 204.1 (1991): 25-32.
15. K. Terabe, K. Kato, H. Miyazaki, S. Yamaguchi, A. Imai, and Y. Iguchi. "Microstructure and crystallization behaviour of TiO2 precursor prepared by the sol-gel method using metal alkoxide." Journal of Materials Science 29.6 (1994): 1617-1622.
16. S. Doeuff, M. Henry, C. Sanchez, and J. Livage. "Hydrolysis of titanium alkoxides: modification of the molecular precursor by acetic acid." Journal of Non-crystalline Solids 89.1-2 (1987): 206-216.
17. William J. Dawson. "Hydrothermal synthesis of advanced[electronic] ceramic powders." American Ceramic Society Bulletin 67.10 (1988): 1673-8.
18. Eda Kazuo. (2006). Research on hydrothermal synthesis. Retrieved from http://www2.kobe-u.ac.jp/~eda/japanese/research_3.html
19. AR Coating Techniques: Thin Film Deposition Methods. (15 December, 2017). Retrieved from https://www.findlight.net/blog/2017/12/15/ar-coating-techniques/
20. Stéphane Reculusa, and Serge Ravaine. "Synthesis of colloidal crystals of controllable thickness through the Langmuir–Blodgett technique." Chemistry of Materials 15.2 (2003): 598-605.
21. Miguel Clemente‐León, Christophe Mingotaud, Bóatrice Agricole, Carlos J. Gómez‐Garcia, Eugenio Coronado, and Pierre Delhaès. "Application of the Langmuir–Blodgett technique to polyoxometalates: towards new magnetic films." Angewandte Chemie International Edition in English 36.10 (1997): 1114-1116.
22. Vera Cimrová, Marcus Remmers, Dieter Neher, and Gerhard Wegner. "Polarized light emission from LEDs prepared by the Langmuir‐Blodgett technique." Advanced Materials 8.2 (1996): 146-149.
23. Andrea Tao, Franklin Kim, Christian Hess, Joshua Goldberger, Rongrui He, Yugang Sun, Younan Xia, and Peidong Yang. "Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy." Nano Letters 3.9 (2003): 1229-1233.
24. Vadim V. Eremin, Oleg A. Shlyakhtin, and Alexey V. Streletskiy. (12 December, 2011). Langmuir-Blodgett method. Retrieved from http://eng.thesaurus.rusnano.com/wiki/article1797
25. Michael Celestin, Subramanian Krishnan, Shekhar Bhansali, Elias Stefanakos, and D. Yogi Goswami. "A review of self-assembled monolayers as potential terahertz frequency tunnel diodes." Nano Research 7.5 (2014): 589-625.
26. Hendrik Christoffel Hulst, and H. C. van de Hulst. (1981). Light Scattering by Small Particles. New York: Courier Corporation.
27. Craig F. Bohren, and Donald R. Huffman. (2008). Absorption and Scattering of Light by Small Particles. New York: John Wiley & Sons.
28. Abdulsalam Ghalib Alkholidi, and Khaleel Saeed Altowij. "Free Space Optical Communications — Theory and Practices." Contemporary Issues in Wireless Communications. InTech. (2014).
29. John E. Brandenburg. "GEMS (Gravity Electro-Magnetism Strong) SU(5) Theory and The Prediction of Exchange Boson Masses" Bulletin of the American Physical Society 57 (2012).
30. Tatyana A. Bashkatova, Alexey N. Bashkatov, Vyacheslav I. Kochubey, and Valery V. Tuchin. "Light-scattering properties for spherical and cylindrical particles: a simple approximation derived from Mie calculations." Saratov Fall Meeting 2000: Optical Technologies in Biophysics and Medicine II. (2001) Vol. 4241. International Society for Optics and Photonics.
31. Susan E. Skelton, Marios Sergides, Gianluca Memoli, Onofrio M. Maragó, and Philip H. Jones. "Optical squeezing of microbubbles: Ray optics and Mie scattering calculations." Optical Trapping and Optical Micromanipulation IX. (2012) Vol. 8458. International Society for Optics and Photonics.
32. Katsuhiko Kishimoto, and Junichi Kinomoto. "Headlamp and vehicle infrared night vision apparatus employing the headlamp as light source." U.S. Patent No. 8,465,171. (18 June, 2013)
33. Rubén Usamentiaga, Pablo Venegas, Jon Guerediaga, Laura Vega, Julio Molleda, and Francisco G. Bulnes. "Infrared thermography for temperature measurement and non-destructive testing." Sensors 14.7 (2014): 12305-12348.
34. Reuben S. Aspden, Nathan R. Gemmell, Peter A. Morris, Daniel S. Tasca, Lena Mertens, Michael G. Tanner, Robert A. Kirkwood, Alessandro Ruggeri, Alberto Tosi, Robert W. Boyd, Gerald S. Buller, Robert H. Hadfield, and Miles J. Padgett. "Photon-sparse microscopy: visible light imaging using infrared illumination." Optica 2.12 (2015): 1049-1052.
35. Infrared Basics. Retrieved from https://www.pro-therm.com/infrared_basics.php
36. Chongshen Guo, Shu Yin, Mei Yan, Makoto Kobayashi, Masato Kakihana, and Tsugio Sato. "Morphology-controlled synthesis of W18O49 nanostructures and their near-infrared absorption properties." Inorganic Chemistry 51.8 (2012): 4763-4771.
37. Salatiel Menezes, Bernard Coulomb, Corinne Lebreton, and Louis Dubertret. "Non-coherent near infrared radiation protects normal human dermal fibroblasts from solar ultraviolet toxicity." Journal of Investigative Dermatology 111.4 (1998): 629-633.
38. J. Rybczynski, U. Ebels, and M. Giersig. "Large-scale, 2D arrays of magnetic nanoparticles." Colloids and Surfaces A: Physicochemical and Engineering Aspects 219.1-3 (2003): 1-6.