研究生: |
蕭又嘉 Yu-Chia Hsiao |
---|---|
論文名稱: |
TAT 融合蛋白質抑制D 型肝炎病毒包裹及分泌之機制 The feasibility of TAT fusion protein in inhibition of hepatitis D virus assembly and secretion |
指導教授: |
黃琇珍
Hsiu Chen Huang 黃 琤 Cheng Huang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
|
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 70 |
中文關鍵詞: | D型肝炎病毒 、大型delta抗原 、核輸出訊號 |
外文關鍵詞: | hepatitis delta virus, HDAg-L, NES |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
D型肝炎病毒 (hepatitis delta virus, HDV)為一種缺陷型的RNA病毒,必須獲得B型肝炎病毒所提供的的外套膜才具有感染力,因此被歸類為B型肝炎病毒的衛星病毒。D型肝炎病毒顆粒內部含有單股環狀之RNA基因體,並可轉譯出兩種抗原,分別是小型delta抗原 (small delta antigen, HDAg-S)及大型delta抗原 (large delta antigen, HDAg-L)。在功能上,小型delta抗原則為HDV之RNA基因體複製所必需,而大型delta抗原具有CRPQ isoprenylation motif,能夠促使B型肝炎表面抗原共同組成D型肝炎類病毒顆粒之能力。比較胺基酸序列發現,大型delta抗原在C端多了19個胺基酸,此段胺基酸對於病毒顆粒的包裹是重要的,並在第198至210個胺基酸片段(HDAg-L(198-210)),具有核輸出訊號 (nuclear export signal, NES),藉由此訊號可將細胞核內HDV的核糖核蛋白複合體輸出至細胞質。另外,也已知HDAg-L(198-210)與clathrin蛋白的結合效率會影響病毒顆粒的包裹,更與病毒的致病程度呈正相關。在本研究中,我們想要探討利用TAT蛋白之細胞通透性,觀察TAT-HA-HDAg-L(198-210)融合蛋白質對於HDV的包裹與分泌是否會有影響。
首先利用大腸桿菌建立大量表現TAT融合蛋白質的系統。以轉導的方式將TAT-HA-HDAg-L(198-210)蛋白質進入細胞內作用,再使用免疫螢光染色和西方墨點法進行確認,發現能夠在細胞內偵測到TAT-HA-HDAg-L(198-210)。使用細胞存活率試驗觀察TAT-HA-HDAg-L(198-210)融合蛋白質對細胞是否具有毒性。為了探討TAT-HA-HDAg-L(198-210)融合蛋白質對於HDV之影響,首先以GST pull-down assay分析,證實TAT-HA-HDAg-L(198-210)融合蛋白質能夠抑制大型delta抗原與細胞因子clathrin heavy chain蛋白質 (CHC)的結合。進一步以類病毒顆粒組裝分析收集類病毒顆粒 (virus-like particles, VLPs),觀察細胞分泌病毒顆粒的表現情形,證實TAT-HA-HDAg-L(198-210)融合蛋白質能夠抑制HDV病毒顆粒的組裝與分泌。另外,以免疫螢光染色觀察在B型肝炎表面抗原的存在下,其細胞中大型delta抗原的分佈位置,證實TAT-HA-HDAg-L(198-210)蛋白質能夠影響病毒的核輸出功能,並且能抑制病毒顆粒的包裹活性。
經由以上結果,我們推測TAT-HA-HDAg-L(198-210)融合蛋白質能夠抑制大型delta抗原之核輸出功能,並且可以影響CHC與大型delta抗原C端的專一性結合,而作為一種影響HDV包裹及分泌之抑制劑,未來我們期望能在動物實驗上加以佐證,並且更進一步的研究。
Hepatitis delta virus (HDV) is a defective RNA virus, which is a satellite virus of hepatitis B virus (HBV) and requires HBV envelope proteins for packaging and infection. HDV contains a single-stranded circular RNA genome that encodes two forms of hepatitis delta antigen (HDAg), the small delta antigen (HDAg-S) and the large delta antigen (HDAg-L). The HDAg-S is necessary for the HDV RNA replication; while the HDAg-L contains CRPQ isoprenylation motif that is critical for the viral assembly with hepatitis B surface antigen (HBsAg). The two HDAgs are identical in the amino acid sequence, except that the HDAg-L possesses an extra 19-amino-acid extension at the C terminus. The domain spanning amino acid residues 198-210 of the HDAg-L (HDAg-L(198-210)) contains a nuclear export signal (NES). This signal is important for the nuclear export of HDV ribonucleoprotein to the cytoplasm. Further, the binding of HDAg-L(198-210) and clathrin is essential for the viral assembly. In this study, we investigated the use of cell permeable TAT-HA-HDAg-L(198-210) protein in inhibition of HDV assembly and secretion.
Expression and purification of TAT fusion proteins were performed by utilizing gene recombinant method in E. coli protein expression system. To determine whether the purified TAT-HA-HDAg-L(198-210) fusion protein was functional in the cells, the immunofluorescence assay and Western blotting were performed. After transduction, the TAT-HA-HDAg-L(198-210) fusion protein can be detected in the cell. Further, cytotoxicity of TAT-HA-HDAg-L(198-210) fusion protein was investigated by MTT assay. By performing GST pull-down assay, the TAT-HA-HDAg-L(198-210) fusion protein interfered with the interaction between HDAg-L and clathrin heavy chain (CHC). In virus-like particles assembly assay, HDV virus-like particles (VLPs) decreased by TAT-HDAg-L(198-210) fusion protein treatment. Therefore,TAT-HA-HDAg-L (198-210) fusion protein was capable of inhibiting viral particles assembly and secretion of HDV. In addition, in the presence of HBsAg, the cellular distribution of HDAg-L was observed by immunofluorescence staining. The TAT-HA-HDAg-L (198-210) fusion protein had an effect on the nuclear export function of the HDAg-L.
The results suggest that the TAT-HDAg-L(198-210) fusion protein inhibits nuclear export function with the transport of HDAg-L. TAT-HDAg-L (198-210) fusion protein also affects the interaction between CHC and the C terminus of the HDAg-L, and acts as a HDV assembly and secretion inhibitior.
1. Rizzetto, M., et al., Immunofluorescence detection of new antigen-antibody system (delta/anti-delta) associated to hepatitis B virus in liver and in serum of HBsAg carriers. Gut, 1977. 18(12): p. 997-1003.
2. Ponzetto, A., et al., Serial passage of hepatitis delta virus in chronic hepatitis B virus carrier chimpanzees. Hepatology, 1988. 8(6): p. 1655-61.
3. Rizzetto, M., et al., Transmission of the hepatitis B virus-associated delta antigen to chimpanzees. J Infect Dis, 1980. 141(5): p. 590-602.
4. Ponzetto, A., et al., Transmission of the hepatitis B virus-associated delta agent to the eastern woodchuck. Proc Natl Acad Sci U S A, 1984. 81(7): p. 2208-12.
5. Kuo, M.Y., et al., Molecular cloning of hepatitis delta virus RNA from an infected woodchuck liver: sequence, structure, and applications. J Virol, 1988. 62(6): p. 1855-61.
6. Makino, S., et al., Molecular cloning and sequencing of a human hepatitis delta (delta) virus RNA. Nature, 1987. 329(6137): p. 343-6.
7. Govindarajan, S., et al., Fulminant B viral hepatitis: role of delta agent. Gastroenterology, 1984. 86(6): p. 1417-20.
8. Hoofnagle, J.H., Type D (delta) hepatitis. JAMA, 1989. 261(9): p. 1321-5.
9. Farci, P., Delta hepatitis: an update. J Hepatol, 2003. 39 Suppl 1: p. S212-9.
10. Rizzetto, M., A. Ponzetto, and I. Forzani, Hepatitis delta virus as a global health problem. Vaccine, 1990. 8 Suppl: p. S10-4; discussion S21-3.
11. He, L.F., et al., The size of the hepatitis delta agent. J Med Virol, 1989. 27(1): p. 31-3.
12. Sureau, C., The role of the HBV envelope proteins in the HDV replication cycle.
- 66 -
Curr Top Microbiol Immunol, 2006. 307: p. 113-31.
13. Bonino, F., et al., Hepatitis delta virus: protein composition of delta antigen and its hepatitis B virus-derived envelope. J Virol, 1986. 58(3): p. 945-50.
14. Sureau, C., et al., Production of infectious hepatitis delta virus in vitro and neutralization with antibodies directed against hepatitis B virus pre-S antigens. J Virol, 1992. 66(2): p. 1241-5.
15. Monjardino, J., Replication of hepatitis delta virus. J Viral Hepat, 1996. 3(4): p. 163-6.
16. Sureau, C., B. Guerra, and H. Lee, The middle hepatitis B virus envelope protein is not necessary for infectivity of hepatitis delta virus. J Virol, 1994. 68(6): p. 4063-6.
17. Wang, K.S., et al., Structure, sequence and expression of the hepatitis delta (delta) viral genome. Nature, 1986. 323(6088): p. 508-14.
18. Lin, J.H., et al., Characterization of hepatitis delta antigen: specific binding to hepatitis delta virus RNA. J Virol, 1990. 64(9): p. 4051-8.
19. Ryu, W.S., et al., Ribonucleoprotein complexes of hepatitis delta virus. J Virol, 1993. 67(6): p. 3281-7.
20. Bergmann, K.F. and J.L. Gerin, Antigens of hepatitis delta virus in the liver and serum of humans and animals. J Infect Dis, 1986. 154(4): p. 702-6.
21. Lai, M.M., The molecular biology of hepatitis delta virus. Annu Rev Biochem, 1995. 64: p. 259-86.
22. Chang, M.F., et al., Human hepatitis delta antigen is a nuclear phosphoprotein with RNA-binding activity. J Virol, 1988. 62(7): p. 2403-10.
23. Weiner, A.J., et al., A single antigenomic open reading frame of the hepatitis delta virus encodes the epitope(s) of both hepatitis delta antigen polypeptides
- 67 -
p24 delta and p27 delta. J Virol, 1988. 62(2): p. 594-9.
24. Polson, A.G., B.L. Bass, and J.L. Casey, RNA editing of hepatitis delta virus antigenome by dsRNA-adenosine deaminase. Nature, 1996. 380(6573): p. 454-6.
25. Wong, S.K. and D.W. Lazinski, Replicating hepatitis delta virus RNA is edited in the nucleus by the small form of ADAR1. Proc Natl Acad Sci U S A, 2002. 99(23): p. 15118-23.
26. Casey, J.L. and J.L. Gerin, Hepatitis D virus RNA editing: specific modification of adenosine in the antigenomic RNA. J Virol, 1995. 69(12): p. 7593-600.
27. Chao, M., S.Y. Hsieh, and J. Taylor, Role of two forms of hepatitis delta virus antigen: evidence for a mechanism of self-limiting genome replication. J Virol, 1990. 64(10): p. 5066-9.
28. Chang, F.L., et al., The large form of hepatitis delta antigen is crucial for assembly of hepatitis delta virus. Proc Natl Acad Sci U S A, 1991. 88(19): p. 8490-4.
29. Chang, M.F., et al., Nuclear localization signals, but not putative leucine zipper motifs, are essential for nuclear transport of hepatitis delta antigen. J Virol, 1992. 66(10): p. 6019-27.
30. Wang, J.G. and S.M. Lemon, Hepatitis delta virus antigen forms dimers and multimeric complexes in vivo. J Virol, 1993. 67(1): p. 446-54.
31. Xia, Y.P. and M.M. Lai, Oligomerization of hepatitis delta antigen is required for both the trans-activating and trans-dominant inhibitory activities of the delta antigen. J Virol, 1992. 66(11): p. 6641-8.
32. Ghisolfi, L., et al., The glycine-rich domain of nucleolin has an unusual supersecondary structure responsible for its RNA-helix-destabilizing properties. J Biol Chem, 1992. 267(5): p. 2955-9.
- 68 -
33. Lee, C.H., et al., The nucleolin binding activity of hepatitis delta antigen is associated with nucleolus targeting. J Biol Chem, 1998. 273(13): p. 7650-6.
34. Tuteja, N., et al., Human DNA helicase IV is nucleolin, an RNA helicase modulated by phosphorylation. Gene, 1995. 160(2): p. 143-8.
35. Chang, M.F., et al., Functional motifs of delta antigen essential for RNA binding and replication of hepatitis delta virus. J Virol, 1993. 67(5): p. 2529-36.
36. Lee, C.Z., et al., RNA-binding activity of hepatitis delta antigen involves two arginine-rich motifs and is required for hepatitis delta virus RNA replication. J Virol, 1993. 67(4): p. 2221-7.
37. Poisson, F., et al., Characterization of RNA-binding domains of hepatitis delta antigen. J Gen Virol, 1993. 74 ( Pt 11): p. 2473-8.
38. Chang, M.F., C.J. Chen, and S.C. Chang, Mutational analysis of delta antigen: effect on assembly and replication of hepatitis delta virus. J Virol, 1994. 68(2): p. 646-53.
39. Lee, C.H., et al., A novel chromosome region maintenance 1-independent nuclear export signal of the large form of hepatitis delta antigen that is required for the viral assembly. J Biol Chem, 2001. 276(11): p. 8142-8.
40. Wang, Y.H., et al., Novel nuclear export signal-interacting protein, NESI, critical for the assembly of hepatitis delta virus. J Virol, 2005. 79(13): p. 8113-20.
41. Moores, S.L., et al., Sequence dependence of protein isoprenylation. J Biol Chem, 1991. 266(22): p. 14603-10.
42. Tseng, C.H., et al., Modification of small hepatitis delta virus antigen by SUMO protein. J Virol, 2010. 84(2): p. 918-27.
43. Huang, C., et al., Clathrin-mediated post-Golgi membrane trafficking in the
morphogenesis of hepatitis delta virus. J Virol, 2009. 83(23): p. 12314-24.
44. Huang, C., et al., Large hepatitis delta antigen is a novel clathrin adaptor-like protein. J Virol, 2007. 81(11): p. 5985-94.
45. Glenn, J.S., et al., Identification of a prenylation site in delta virus large antigen. Science, 1992. 256(5061): p. 1331-3.
46. Lee, C.Z., et al., Isoprenylation of large hepatitis delta antigen is necessary but not sufficient for hepatitis delta virus assembly. Virology, 1994. 199(1): p. 169-75.
47. Lee, C.Z., P.J. Chen, and D.S. Chen, Large hepatitis delta antigen in packaging and replication inhibition: role of the carboxyl-terminal 19 amino acids and amino-terminal sequences. J Virol, 1995. 69(9): p. 5332-6.
48. de Bruin, W., et al., In vitro binding properties of the hepatitis delta antigens to the hepatitis B virus envelope proteins: potential significance for the formation of delta particles. Virus Res, 1994. 31(1): p. 27-37.
49. Puertollano, R., Clathrin-mediated transport: assembly required. Workshop on Molecular Mechanisms of Vesicle Selectivity. EMBO Rep, 2004. 5(10): p. 942-6.
50. Mellman, I., Endocytosis and molecular sorting. Annu Rev Cell Dev Biol, 1996. 12: p. 575-625.
51. Raiborg, C., et al., Hrs recruits clathrin to early endosomes. EMBO J, 2001. 20(17): p. 5008-21.
52. Nagahara, H., et al., Transduction of full-length TAT fusion proteins into mammalian cells: TAT-p27Kip1 induces cell migration. Nat Med, 1998. 4(12): p. 1449-52.
53. Schwarze, S.R., et al., In vivo protein transduction: delivery of a biologically active protein into the mouse. Science, 1999. 285(5433): p. 1569-72.
54. Kou, Y.H., et al., Differential requirements of NS4A for internal NS3 cleavage and polyprotein processing of hepatitis C virus. J Virol, 2007. 81(15): p. 7999-8008.
55. Kirchhausen, T., Clathrin. Annu Rev Biochem, 2000. 69: p. 699-727.
56. Owen, D.J. and J.P. Luzio, Structural insights into clathrin-mediated endocytosis. Curr Opin Cell Biol, 2000. 12(4): p. 467-74.
57. Pearse, B.M., C.J. Smith, and D.J. Owen, Clathrin coat construction in endocytosis. Curr Opin Struct Biol, 2000. 10(2): p. 220-8.