簡易檢索 / 詳目顯示

研究生: 張信昌
Chang, Hsin-Chang
論文名稱: 空心陰極放電效應增強雙頻電容式耦合電漿源之數值模擬研究
Numerical simulation study of hollow cathode discharge enhanced dual-frequency capacitively coupled plasma discharges
指導教授: 陳金順
Chen, Gen-Shun
口試委員: 柳克強
Leou, Keh-Chyang
張家豪
Chang, Chia-Hau
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 149
中文關鍵詞: 空心陰極效應電容式耦合電漿源電漿模擬雙頻電漿蝕刻電漿物理
外文關鍵詞: Hollow cathode discharge effect, CCP, plasma simulation, plasma etching, dual-frequency, plasma physics
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電容耦合電漿源(Capacitively coupled plasma (CCP) sources)近年來已經被廣泛的使用在材料製程中。本研究之主旨為探討雙頻(Dual frequency)空心陰極放電(hollow cathode discharge, HCD)效應增強之電容式耦合電漿源(HCD-CCP)之電漿特性與操作參數之關聯性,並分析其物理機制。研究方法為數值模擬分析,採用二維流體模型,使用氬氣(Argon)電漿,內容包含3個氣體粒子以及4條氣相反應。
    本研究首先探討操作於27.12 MHz之射頻CCP放電中接地電極溝槽之HCD效應。模擬結果顯示,溝槽寬度應大於為兩倍鞘層厚度加上電子與中性粒子之平均自由徑,HCD效應明顯產生,此與文獻中之推論所示之 HCD 效應產生條件相符。模擬結果亦顯示置於接地電極之溝槽亦產生HCD效應,可調控徑向之電漿密度分布。本研究進一步探討溝槽尺寸與操作參數對 HCD 效應之影響,模擬結果顯示, HCD 效應隨溝槽深度/操作氣壓/功率與頻率等參數增加而上升。其中電漿放電機制分別為:當溝槽深度增加,將使得空心陰極放電體積增加,進而提升其中之電漿密度;隨著操作壓力提升,電子與中性粒子之間碰撞增加而減少平均自由徑,溝槽區電子密度提高;射頻功率增加,將提升電子密度造成鞘層厚度變薄;而射頻功率上升,電漿密度提升,鞘層厚度下降;上述之操作參數變化皆影響電漿特性,提升HCD效應。
    在雙頻(dual-frequency, DF) HCD-CCP 之特性模擬分析方面,功率電極施加之射頻電壓頻率為27.12 MHz與2 MHz。首先探討CCP與HCD-CCP不同低頻電壓之影響,模擬結果顯示,CCP中,低頻電壓上升,離子能量分佈函數(Ion energy distribution function, IEDF)往高能區偏移而降低,離子能量(Ion energy)提升,而電子密度些微下降,顯示雙頻CCP在電子密度與離子能量獨力控制效果較佳;在HCD-CCP中,當提升低頻電壓,電子密度於溝槽區明顯增加,仍具有HCD效應,但相較於CCP之結果,由於電漿密度隨低頻電壓增加而下降使鞘層厚度增加,致使HCD效應降低趨勢。


    Capacitively coupled plasma (CCP) sources have been widely used for material processing. The purpose of this study is to investigate the plasma characteristics and the parametric analysis of dual- frequency on HCD-CCP, and is comprehend physical mechanism. The research method is numerical simulation analysis, it adopts the two dimensional fluid model. The simulation model takes into account 3 gaseous species and 4 reactions for argon plasma.
    One of study is investigated the hollow cathode discharge effect (HCD) of the trench at ground electrode by operating at 27.12 MHz with CCP discharged. The simulation results show that if the width of the trench is wider than the sum of twice the thickness of the plasma sheath and electron-neutral mean free path (2ds+λ), HCD obviously generates and this result corresponds with the conditions from the HCD in the literatures. Therefore, HCD generates at the trench of ground electrode and it can tune the distribution of radial plasma density. This study has further discussion for the effect of trench size and operating parameters on HCD. The simulation results show that HCD rises with the increase of the trench depth, operating pressure, power and frequency parameters etc. The plasma discharge mechanism: When the trench depth increases, the area of trench is increased and the electron density at position of trench is promoted; As the operating pressure rises, the collisions probability between electrons and neutral particles decreases and the mean free path drops with the increase of the electron density at the position of trench; When bumping the applied power up, increasing the electron density causes the sheath thickness to become thinner; Though driving frequency rises, the plasma density is promoted with the reduce of the sheath thickness. To sum up, the above simulation results influence the plasma characteristic and effectively improve the hollow cathode discharge.
    In the simulation analysis of the characteristics of dual-frequency HCD-CCP, the dual radio frequency voltage of power electrode are 27.12 MHz and 2 MHz. In CCP, simulation analysis show that the low frequency voltage increases, Ion energy distribution function (IEDF) shifts to high energy level and drops; ion energy is promoted and the electron density depends slightly on the LF amplitude. Hence, the independently control effect in electron density and ion energy is better in dual frequency CCP; In HCD-CCP, the low frequency voltage increases with the electron density obviously enhanced in the position of trench and still has the HCD effect. However, compared with the results of CCP, the thickness of the sheath increases due to the plasma density decreases with the decrease of low frequency voltage, therefore, the HCD effect has a downward trend.

    摘 要 i 誌 謝 v 目 錄 vii 圖目錄 ix 表目錄 xv 第一章 背景與動機 1 1.1 前言 1 1.2 研究目的 2 1.3 文獻回顧 2 1.3.1 電漿蝕刻模擬建立 2 1.3.2 Hollow cathode discharge文獻回顧 3 1.3.3 隨機加熱機制文獻回顧 11 1.3.4 雙頻放電文獻回顧 12 1.4 文獻回顧結論 18 第二章 電漿蝕刻機制與應用 19 2.1 電漿基本原理 19 2.2 電漿的蝕刻機制 21 2.3 電容式耦合電漿源加熱機制 23 2.4 電容式耦合電漿源在加壓電極增加溝槽結構產生HCD機制 23 第三章 物理模型與研究方法 24 3.1 流體模型 24 3.2 幾何結構與邊界條件 29 3.3 反應式資料庫 32 3.4 起始條件 34 3.5 軟體簡介 34 第四章 電容式耦合單頻電漿模擬結果 40 4.1 條件設定及起始狀況 40 4.2 隨時變之模擬結果 41 4.2.1 基本放電特性的影響 41 4.2.2 主要粒子的分析 49 4.2.3 一個電壓週期內的變化 52 第五章 電容式耦合雙頻電漿模擬結果 55 5.1 不同低頻之電壓影響 55 5.1.1 模擬參數設定 55 5.1.2 不同低頻電壓對電漿特性的影響 57 5.2 不同低頻之頻率影響 67 5.2.1 模擬參數設定 67 5.2.2 不同低頻之頻率對電漿特性的影響 69 第六章 空心陰極結構模擬結果 77 6.1 模擬與理論公式之驗證 77 6.2 溝槽深度對電漿之影響 79 6.2.1 模擬參數設定 79 6.2.2 不同溝槽深度對電漿放電特性的影響 80 6.3 施加功率對電漿之影響 86 6.3.1 模擬參數設定 86 6.3.2 不同功率對電漿放電特性的影響 87 6.4 操作壓力對電漿之影響 94 6.4.1 模擬參數設定 94 6.4.2 不同壓力對電漿放電特性的影響 95 6.5 施加頻率對電漿之影響 101 6.5.1 模擬參數設定 101 6.5.2 不同頻率對電漿特性的影響 102 第七章 雙頻空心陰極結構模擬結果 108 7.1 不同低頻之電壓影響 108 7.1.1 模擬參數設定 108 7.1.2 不同低頻電壓對電漿放電特性的影響 109 7.2 不同低頻之頻率影響 115 7.2.1 模擬參數設定 115 7.2.2 不同低頻之頻率對電漿放電特性的影響 115 第八章 結論 117 參考資料 118 附錄A. 收斂問題 121 A.1 調整flow time step (Tn)情形 121 A.2 調整electron and ion time step (Tion, Te)情形 122 A.3 調整Solver control 情形 124 A.4 Auto flow time step情形 126 A.5 Auto flow time step與未點電漿情形 128 附錄B. DC self-bias 問題 130 B.1 模擬參數設定與邊界設定 130 B.2 結果與討論 132 附錄C 隨機加熱機制之影響 137 C.1 模擬參數設定 137 C.2 隨機加熱對電漿放電特性的影響 138

    [1] O. Buneman, "COMPUTER-SIMULATION USING PARTICLES - HOCKNEY,RW, EASTWOOD,JW," Siam Review, vol. 25, pp. 425-426, 1983.
    [2] M. Amini, J. W. Eastwood, and R. W. Hockney, "TIME INTEGRATION IN PARTICLE MODELS," Computer Physics Communications, vol. 44, pp. 83-93, Apr-May 1987.
    [3] R. A. Stewart, P. Vitello, and D. B. Graves, "2-DIMENSIONAL FLUID MODEL OF HIGH-DENSITY INDUCTIVELY-COUPLED PLASMA SOURCES," Journal of Vacuum Science & Technology B, vol. 12, pp. 478-485, Jan-Feb 1994.
    [4] P. L. G. Ventzek, R. J. Hoekstra, and M. J. Kushner, "2-DIMENSIONAL MODELING OF HIGH PLASMA-DENSITY INDUCTIVELY-COUPLED SOURCES FOR MATERIALS PROCESSING," Journal of Vacuum Science & Technology B, vol. 12, pp. 461-477, Jan-Feb 1994.
    [5] Y. Ohtsu, Y. Okuno, and H. Fujita, "OBSERVATION OF RADIOFREQUENCY DISCHARGES AT VARIOUS DRIVING FREQUENCIES," Journal of Applied Physics, vol. 73, pp. 2155-2159, Mar 1993.
    [6] T. Tatsumi, K. Urata, K. Nagahata, T. Saitoh, Y. Nogami, and K. Shinohara, "Quantitative control of etching reactions on various SiOCH materials," Journal of Vacuum Science & Technology A, vol. 23, pp. 938-946, Jul-Aug 2005.
    [7] K. Bera, S. Rauf, K. Ramaswamy, and K. Collins, "Control of plasma uniformity in a capacitive discharge using two very high frequency power sources," Journal of Applied Physics, vol. 106, Aug 2009.
    [8] T. Lafleur and R. W. Boswell, "Particle-in-cell simulations of hollow cathode enhanced capacitively coupled radio frequency discharges," Physics of Plasmas, vol. 19, Feb 2012.
    [9] Y. Ohtsu, N. Matsumoto, J. Schulze, and E. Schuengel, "Capacitive radio frequency discharges with a single ring-shaped narrow trench of various depths to enhance the plasma density and lateral uniformity," Physics of Plasmas, vol. 23, Mar 2016.
    [10] Y. Ohtsu and Y. Kawasaki, "Criteria of radio-frequency ring-shaped hollow cathode discharge using H-2 and Ar gases for plasma processing," Journal of Applied Physics, vol. 113, Jan 2013.
    [11] A. J. L. Michael A. Lieberman, Principles of Plasma Discharges and Materials Processing, 2005.
    [12] 陳佳瑜, "Numerical Simulation Study of Capacitively Coupled RF Plasma Discharges–Effect of Hollow Cathode Structure," 2017.
    [13] V. A. Godyak, R. B. Piejak, and B. M. Alexandrovich, "Measurements of electron energy distribution in low-pressure RF discharges," Plasma Sources Science & Technology, vol. 1, pp. 36-58, Mar 1992.
    [14] B. P. Wood, M. A. Lieberman, and A. J. Lichtenberg, "STOCHASTIC ELECTRON HEATING IN A CAPACITIVE RF DISCHARGE WITH NON-MAXWELLIAN AND TIME-VARYING DISTRIBUTIONS," Ieee Transactions on Plasma Science, vol. 23, pp. 89-96, Feb 1995.
    [15] B. G. Heil, U. Czarnetzki, R. P. Brinkmann, and T. Mussenbrock, "On the possibility of making a geometrically symmetric RF-CCP discharge electrically asymmetric," Journal of Physics D-Applied Physics, vol. 41, p. 19, Aug 2008.
    [16] S. J. P. R.J. Shul, "Handbook of Advanced Plasma Processing Techniques," 2000.
    [17] J. K. Lee, O. V. Manuilenko, N. Y. Babaeva, H. C. Kim, and J. W. Shon, "Ion energy distribution control in single and dual frequency capacitive plasma sources," Plasma Sources Science & Technology, vol. 14, pp. 89-97, Feb 2005.
    [18] S. J. Doyle, T. Lafleur, A. R. Gibson, P. Tian, M. J. Kushner, and J. Dedrick, "Enhanced control of the ionization rate in radio-frequency plasmas with structured electrodes via tailored voltage waveforms," Plasma Sources Science & Technology, vol. 26, Dec 2017.
    [19] 鍾昌貴, 楊子明, 沈志彥, 李美儀, 吳鴻佑, 詹家瑋, 吳耀銓, 半導體製程設備技術, 2017.
    [20] "CFD-ACE V2010.0 Modules Manua," 2010.
    [21] S. Y. So, A. Oda, H. Sugawara, and Y. Sakai, "Transient behaviour of CF4 rf plasmas after step changes of power source voltage," Journal of Physics D-Applied Physics, vol. 34, pp. 1919-1927, Jun 2001.
    [22] "CFD-ACE V2010.0 Modules Manual," 2010.
    [23] D. Zhang and M. J. Kushner, "Surface kinetics and plasma equipment model for Si etching by fluorocarbon plasmas," Journal of Applied Physics, vol. 87, pp. 1060-1069, Feb 2000.
    [24] H. Fukumoto, I. Fujikake, Y. Takao, K. Eriguchi, and K. Ono, "Plasma chemical behaviour of reactants and reaction products during inductively coupled CF4 plasma etching of SiO2," Plasma Sources Science & Technology, vol. 18, Nov 2009.

    [25] O. Leroy, G. Gousset, L. L. Alves, J. Perrin, and J. Jolly, "Two-dimensional modelling of SiH4-H-2 radio-frequency discharges for a-Si : H deposition," Plasma Sources Science & Technology, vol. 7, pp. 348-358, Aug 1998.
    [26] Y.-R. Zhang, S. Tinck, P. D. Schepper, Y.-N. Wang, and A. Bogaerts, "Modeling and experimental investigation of the plasma uniformity in CF4/O2 capacitively coupled plasmas, operating in single frequency and dual frequency regime," Journal of Vacuum Science & Technology A, vol. 33, p. 021310, 2015.

    QR CODE