簡易檢索 / 詳目顯示

研究生: 陳依琳
Chen, Yi-Lin
論文名稱: 應用射束擋塊裝置於PET/CT之散射修正
Correction for Scatter Contamination in PET/CT Scanner using Beam Stopper Device
指導教授: 莊克士
Chuang, Keh-Shih
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 68
中文關鍵詞: 正子斷層造影射束擋塊裝置散射修正
外文關鍵詞: PET/CT, Beam stopper device, Scatter correction
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 正子斷層掃描為分子影像上一項重要的工具。使用三維的取像模式可增加造影的靈敏度,但散射光子被偵測的機率也隨之升高。散射事件會提高背景雜訊,降低重建影像的對比度及量化分析的準確性。目前臨床上被廣泛應用於正子斷層掃描系統的散射事件修正為單次散射光子模擬法,是針對散射一次的光子做模擬,未考慮來自照野外及多次散射的散射事件貢獻使其準確度受到限制。而本篇研究所提出的射束擋塊散射修正法,是利用高原子序物質製成的射束擋塊,置於待測物周圍,用來部分阻擋真實事件,藉由放置及未放置射束擋塊裝置的兩組掃描資訊可計算出散射事件的分布。此方法藉由直接量測來估算散射事件分布,能同時修正不同類型的散射事件,包含多次散射以及來自照野外的散射事件。在先前發表的研究中已使用蒙地卡羅模擬來驗證射束擋塊散射修正法的可行性。而此篇研究主要是將此散射修正法應用在臨床正子電腦斷層掃描系統上。藉由實際假體實驗以及蒙地卡羅模擬與單次散射光子模擬法比較,來驗證射束擋塊散射修正法的修正效果。結果顯示射束擋塊散射修正法能有效提高影像對比度及量化準確性,因此本研究所提出的散射修正法可有效且準確的應用於臨床。


    Positron emission tomography (PET) is an important tool for molecular imaging. Fully three-dimensional (3D) acquisition mode can achieve, high sensitivity of coincidence events, but the absence of inter-slice septa, inevitably leads to increased scattered events. Scatter coincidence add a background to the true coincidence distribution, decreasing contrast by misplacing events during reconstruction and degrades the accuracy of quantitative analysis. Most commercial PET systems employ the single scatter simulation (SSS) algorithm for scatter correction. However, the SSS method achieves limited accuracy because it estimates scatter from single scatter events and does not consider the scatter from out of field of view (OFOV). We have developed a reliable scatter correction scheme for PET/CT imaging with beam stopper device (BS), with the aim of accurately estimating scatter distribution from the projection image. In this research, we proposed an accurate scatter correction method employing the beam stopper device. By directly estimating the scatter component at the LOR corresponding to the stopper, various kinds of scattered events including the most challenging multiple scatter and scatter from outside the FOV can be effectively compensated. Furthermore, no cumbersome iterative process and preliminary 2D estimates of the emitter and attenuator distributions are needed, which could reduce the computation cost and the implementation complexity of the BS method. We conclude that the BS method appears to be a feasible way to correct scattered events in PET/CT imaging.

    第一章 緒論 1 第一節 前言 1 1 正子斷層造影 ( Positron emission tomography, PET ) 1 1.1 放射性示蹤劑 1 1.2 閃爍偵檢器 3 1.3 成像原理 4 1.4 同符事件 5 2 正子電腦斷層掃描(PET/CT)影像技術 7 2.1 衰減校正 8 2.2 成像流程 10 第二節 實驗動機與目的 12 1 實驗動機 12 2 實驗目的 12 第三節 論文架構 13 第二章 文獻回顧 14 第一節 硬體方法 16 第二節 多能窗方法 16 第三節 摺積與解摺積方法 18 第四節 直接計算散射分布 21 1 蒙地卡羅方法 21 2 解析模型基底法( Analytic model-based ) 21 第五節 疊代重建散射修正方法 24 第三章 材料與方法 25 第一節 射束擋塊散射修正法 25 1. 原理 25 1.1 受測物與射束擋塊裝置掃描 25 1.2 計算散射事件 26 1.3 真實事件 27 2. 決定射束擋塊穿透分率 28 2.1 空氣掃描法 (Air scan) 28 2.2 解析計算模型 (Analytical Modeling) 28 3. 演算法實作流程 37 第二節 實驗儀器與設備 39 1. 臨床實驗 39 1.1 正子電腦斷層掃描儀 39 1.2 實驗設備 40 1.3 實驗參數設定及數據收取 42 2. 蒙地卡羅模擬 43 2.1 正子斷層掃描機的模擬 44 2.2 活度與衰減分布影像 45 第三節 資料處理與分析方法 47 1. 實驗數據處理 47 1.1 數據處理與影像重建 47 1.2 蒙地卡羅模擬 48 2. 影像品質評估 48 2.1 對比 ( Contrast, CS ) 48 2.2 變異係數 (Coefficient of variation, CV) 49 第四章 研究結果 50 第一節 對比假體 50 1散射事件正弦圖 51 2.重建影像 53 3. 影像剖面圖 53 4. 影像品質評估 54 第二節 胸腔假體 55 1. 散射事件正弦圖 55 2. 重建影像 56 3. 影像剖面圖 57 4. 影像品質評估 58 第五章 討論 60 第一節 射束擋塊裝置設計考量 60 第二節 射束擋塊穿透分率 60 第三節 射束擋塊散射修正法與單次散射光子模擬法 62 第四節 未來發展 62 第六章 結論 63 第七章 參考文獻 66

    Bailey DL and Meikle S R 1994 A convolution-subtraction scatter correction method for 3D PET Phys. Med. Biol. 39 411-24
    Beyer T, Antoch G, Mu¨ller S, Egelhof T, Freudenberg LS, Debatin J and Bockisch A 2004 Acquisition Protocol Considerations for Combined PET/CT Imaging J. Nucl. Med. 45 25S-35S
    Burger C, Goerres G, Schoenes S, Buck A, Lonn A.H.R. and Schulthess G.K. 2002 PET attenuation coefficients from CT images: experimental evaluation of the transformation of CT into PET 511-keV attenuation coefficients Eur. J. Nucl. Med. 29 922-927
    Chuang KS, Wu J, Jan ML, Chen S, and Hsu CH 2005 Novel scatter correction for three-dimensional positron emission tomography by use of a beam stopper device Nucl. Instr. and Meth. A 551 540-52
    E Rapisarda, V Bettinardi, K Thielemans, and M C Gilardi 2010 Image-based point spread function implementation in a fully 3D OSEM reconstruction algorithm for PET Phys. Med. Biol. 55 4131-4151
    Fahey F H, DSc 2002 Data acquisition in PET imaging J. Nucl. Med. Technol. 30 39-49
    Gonias P., Bertsekas N., Karakatsanis N, et al. 2007 Validation of a GATE model for the simulation of the Siemens biographTM 6 PET scanner Nucl. Instr. Meth. A 571 263-266
    Grootoonk S, Spinks T J, Sashin D, Spryou N M and Jones T 1996 Correction for scatter in 3D brain PET using a dual energy window method Phys. Med. Biol. 41 2757-74
    Herzog H, Tellmann L, Hocke C, Pietrzyk U, Casey M E and Kuwert T 2004 NEMA NU2-2001 guided performance evaluation for four Siemens ECAT PET scanners IEEE Trans. Nucl. Sci. 51 2662-9
    Humm J L, Rosenfeld A and Guerra A D 2003 From PET detectors to PET scanners Eur. J. Nucl. Med. Mol. Imaging 30 1574-97
    Hutton BF and Baccarne V 1998 Efficient scatter modeling for incorporation in maximum likelihood reconstruction Eur J. Nucl. Med. 25 1658-1665
    Jaszczak R J, Greer K L, Floyd C E, Harris C C and Coleman R E 1984 Improved SPECT quantification using compensation for scattered photons J. Nucl. Med. 25 893-900
    Kinahan P E, Townsend D W, Beyer T and Sashin D 1998 Attenuation correction for a combined 3D PET/CT scanner Med. Phys. 25 .10.
    Kapoor V, McCook BM, and Torok FS 2004 An Introduction to PET-CT Imaging RadioGraphics 24 523-43
    Ollinger JM 1996 Model-based scatter correction for fully 3D PET Phys. Med. Biol. 41 153-76
    Rahmim A, Tang J, Lodge MA, Lashkari S, Ay MR, Lautamaki R, Tsui BMW, Bengel FM 2008 Analytic system matrix resolution modeling in PET: an application to Rb-82 cardiac imaging Phys. Med. Biol. 53 5947-5965
    Tonwsend D W 2004 Physical principles and technology of clinical PET imaging Ann. Acad. Med. 33 133-45
    Panin V, Kehren F, Rothfuss H, Hu D, Michel C, and Casey ME 2006 PET reconstruction with system matrix derived from point source measurements IEEE Trans. Nucl. Sci. 53 152–159
    Panin V,Kehren F,Michel C, and Casey ME 2006 Fully 3-D PET reconstruction with system matrix derived from point source measurements IEEE Trans. Med. Imaging 25 907-21
    Matheoud R, Secco1 C, Monica P.D., Leva L, Sacchetti G, Inglese E and Brambilla M 2009 The effect of activity outside the field of view on image quality for a 3D LSO-based whole body PET/CT scanner Phys. Med. Biol. 54 5861-5872
    Watson C C 2000 New, faster, image-based scatter correction for 3D PET IEEE Trans. Nucl. Sci. 47 1587-94
    Watson C C, Casey ME, Michel C, et al. 2004 Advances in scatter correction for 3D PET/CT. Conference Record of the IEEE Nuclear Science Symposium 5 3008–3012
    Wu J, Chuang K S, Hsu C H, Jan M L, Hwang I M, and Chen T J 2005 Scatter correction for 3D PET using beam stoppers combined with dual-energy window acquisition: a feasibility study Phys. Med. Biol. 50 4593-4607
    Zaidi H 2000 Comparative evaluation of scatter correction techniques in 3D positron emission tomography Eur. J. Nucl. Med. 27 1813-26
    Zaidi H and Montandon M-L 2007 Scatter Compensation Techniques in PET PET Clin. 2 219-34
    Zanzonico P 2004 Positron Emission Tomography: A review of basic principles, scanner design and performance, and current systems Seminars in Nuclear Medicine 34 87-111

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE