研究生: |
趙正弘 Chao, Jeng-Hong |
---|---|
論文名稱: |
以六標準差改善車用電子之線束製程良率-以S公司為例 Applying Six Sigma to Improve Automotive Electric Wire Harness Process Yield - A Case Study of S Company |
指導教授: |
吳建瑋
Wu, Chien-Wei |
口試委員: |
侯建良
Hou, Jiang-Liang 戴于婷 Tai, Yu-Ting |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系碩士在職專班 Industrial Engineering and Engineering Management |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 60 |
中文關鍵詞: | 六標準差 、連接器 、田口方法 、實驗設計 、DMAIC |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
個案公司原本為電子連接器與線束專業製造廠,成功轉型為全方位的電子產品研發、製造整合服務提供者,為客戶提供完整的電子產品解決方案,涵蓋醫療、汽車、綠能 (包括風能與太陽能)、工業控制與消費性產品的國際代工大廠,其所生產的連接器與線束是全球排名第十二大線材組裝廠商,全球排名第四十九大電子服務製造商,在2012年初看準「汽車電子」是項涉及汽車製造、電子、光電、通訊等技術的系統產品,除原有大陸廠之含氧感知器 (Oxygen Sensor,O2 Sensor) 外跨入更多應用領域包含引擎/傳動系統、懸吊/底盤系統、安全系統、車身電子系統、駕駛資訊系統及保全系統,但在品質上較消費性產品轉換為更嚴苛之車用電子,客戶訂出的品質目標為進料檢驗合格率:100%,每月品質最差供應商進行延長票期30天,一季都未達標準,除了最高負責人需至客戶端領「黑旗」,更需面臨客戶轉單的重大危機,公司高層開始導入原有之改善系統QC七大手法與QC story進行改善,但成效均相當有限。
因此,透過導入六標準差之專案團隊以 DMAIC,即定義 (Define)、衡量 (Measure)、分析 (Analyze)、改善 (Improve) 與控制 (Control) 五大步驟,改善線束製程最常見鉚壓不良之問題,專案小組先以品質關鍵因素 (Critical to Quality, CTQ) 展開對應客戶需求的關鍵品質特性,再找到可量測的主要輸出變數,透過計量型、計數型與不可重複型的量測系統分析,確認進行所研究之量測數據可信,並檢討原有製程能力。在分析階段找出改善需要的流程輸入變數,透過製程改善將客訴率降低與廠內良率提升,利用田口方法進行因子之參數設計,成功提升良率導入量產,現在不但訂單穩定,客戶更進一步與個案公司研發團隊合作研發車載電腦 (Electronic Control Unit,ECU) 電路板往整機之設計製造整合前進。
The case company is a specialized electronic connectors and wiring harness factory. It successfully transformed to a professional electronic product design and manufacturing company, integrating service providers as well as offering total product solutions including medical, automotive, renewable energy (wind and solar), industrial control and consumer applications. The company produces connectors and wiring harnesses, and is now the world’s twelfth largest electronics manufacturing services provider.In early 2012, top managers realized that the “Automotive Electronics”, including automobile manufacturing, electronics, optoelectronics, communications, and all other automotive related systems was a potential industry. Based on an existing product, Oxygen sensor (O2 sensor) in mainland China, the company wants to expand its field to include engines, transmissions, suspension, chassis systems, safety systems, body electronics, driver information and security systems. However, the requirements for the above mentioned fields are far more stringent than the quality requirements for consumer products. The customer’s quality objectives are set at “An incoming inspection pass rate of 100%”. The worst monthly quality suppliers are punished by a 30 day extension of payment, and the manager in charge of that supplier is penalized by “Carrying a black flag” if the quality remains substandard over the following quarter. Furthermore, all orders to that supplier will then be passed on to other manufacturers. At first, the continuous improvement team followed the original QC tools and QC Story to improve the system, but the results were quite limited.
Using the Six Sigma project and following the DMAIC steps, the case company improved the crimping process of wire harness. The project team used the CTQ tree to analyze the corresponding customer’s critical quality characteristics, and found measurable main output variables. By the countable and unrepeatable type of measurement system analysis, the team members confirmed measurements of credible data to review the existing process capability.In the analysis phase the company identified the input variables which through process improvement will reduce the customer’s complaints and improve the yield rate. The company used the the Taguchi method to set up robust crimping parameters. The result of this was a marked improvement in the yield for the mass-production phase and there has been a gradual increase in stable customer order requests.Another notable point is that more customers have done more research and design in collaboration with the case company’s R&D team on the design of the ECU PCB
中文文獻
1. 六標準差應用手冊(2012),桃園市:科建管理顧問股份有限公司。
2. 任鳳文 (1997),汽車線束設計、製造及檢測的探討,汽車電器。
3. 吳建瑋 (2009),全面品質管理課程講義,國立清華大學。
4. 谷孝衛 (2006),汽車線束設計及線束用原材料,汽車電器。
5. 李育仁 (2009),六標準差應用於TFT-LCD玻璃基板產能提昇之研究,國立成功大學工學院工業工程與工程管理學系碩士論文。
6. 林俊蓮 (2009),利用六標準差手法提升封裝廠之晶片切割良率,國立清華大學工業工程與工程管理學系碩士論文。
7. 張治萍 (2009),運用六標準差方法改善馬達噪音問題,國立清華大學工業工程與工程管理學系碩士論文。
8. 張景翔 (2011),運用六標準差方法改善焊線式電源連接器斷電問題 ,國立清華大學工業工程與工程管理學系碩士論文。
9. 蘇朝墩 (2013),品質工程:線外方法與應用,新北市:前程文化事業有限公司。
10. 蘇朝墩 (2009),六標準差,新北市:前程文化事業有限公司。
英文文獻
1. AIAG ISO/TS (2009), TS 16949 handbook ,Plexus China。
2. Blakeslee Jr., (1999), Implementing the Impact of Six Sigma Solution, Quality Porgress, Vol. 32 No.7, pp.77–85.
3. Eckes, G., (2002), Making Six Sigma last: managing the balance between cultutal and technical change, New York: John Wiley
4. Hahn, G.J. and William, J.H., (1999), The Impact of Six Sigma Improvement A Glimpse into Future of Statistics, American Statistician, pp. 208-216.
5. Lynch, D.P., Bertolino, S., and Cloutier, E., (2003), How to Scope DMAIC Project, Quality Progress, Vol.36, pp. 37-41.
6. Mach, P., and Guagueta M., (2001), Utilization of the Seven Mishawaka Tools (Old Tools) in the Six Sigma Strategy, 24th International Spring Seminar on Electronics Technology.
7. Omachonu, V.K. , and Ross, J.E. (1995), Principles of Total Quality. London: Kogan Page.
8. Peter S. Pande (2002), The Six Sigma Way Team Fieldbook, New York: McGraw-Hill.
9. R.D. Snee and R.W. Hoerl, (2003), Leading Six Sigma: a step-by step guide base on experience with GE and other Six Sigma companies, U.S.A:FT Prentice-Hall.
10. Slater, R., (1999), Jack Welch and the GE Way: Management Insightstand Leadership Secrets of the Legendary CEO, New York: McGraw-Hill.