簡易檢索 / 詳目顯示

研究生: 康嘉麟
KANG,JIA-LIN
論文名稱: 醇胺與氨水溶液之超重力旋轉床建模應用於 二氧化碳吸收製程
Modeling Rotating Packed Bed on Absorption of CO2 by Aqueous Amines and Ammonia Solutions
指導教授: 鄭西顯
Jang,Shi-Shang
口試委員: 談駿嵩
汪上曉
吳煒
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 105
語文別: 英文
論文頁數: 133
中文關鍵詞: 二氧化碳捕獲超重力旋轉床醇胺溶液氨水溶液工業級設計
外文關鍵詞: CO2 capture, rotating packed bed, monoethanolamine solution, dilute ammonia, Industrial scale design
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此論文貢獻如下:
    • 建立醇胺與稀釋氨水溶液基於雙模理論之超重力轉床模型
    • 發現溫度凸波存在於旋轉床之中當大量二氧化碳被移除
    • 發現使用修正的表面反應常數在二氧化碳增強因子之中是必要的以增強在高濃度醇胺吸收劑之預測能力
    • 使用傳統吸收塔與超重力旋轉床模型進行實驗及到工業級吞吐量的差異比較
    • 發現使用氨水溶液,超重力旋轉床有較佳的表現,主要是因為CO2 loading 操作差異造成
    • 發現單位質傳高度(Height of a Transfer Unit)不適合作為比較差異的指標
    • 體積質傳速率(Volumetric mass transfer rate )為較適合的指標


    The contributions of this dissertation are listed as following:
    • Developed a model of the carbon dioxide absorption by monoethanolamine and dilute ammonia solutions in a rotating packed bed based on two-film theory.
    • Found out that temperature bulge can be found in the rotating packed bed when a large amount of carbon dioxide was removed.
    • Found out that use of a modified expression for the apparent kinetic constant in the enhancement factor is necessary to predict experiment results using high amine concentrations.
    • Compared to the traditional packed bed and rotating packed bed by models for different throughput rates, ranging from bench scale to industrial scale.
    • Found out that the apparent intensification effect of the rotating packed bed is more significant for ammonia than for monoethanolamine solution because of the different operating of CO2 loading.
    • Found out that the Height of a Transfer Unit is inappropriate to be an indicator for intensification effect of volume.

    Abstract I Table of Contents II List of Figures VI List of Tables X Chapter 1 Introduction 1 1.1 Energy Consumption and CO2 Emissions 1 1.2 Significance of the Research 4 1.3 Research Objectives 6 1.4 Research Contributions 7 1.5 Outline of Dissertation 8 Chapter 2 Literature Review 11 2.1 Amine and Ammonia Capture Mechanisms 11 2.2 Basic Principles and Structure of the Rotating Packed Bed 15 2.3 Mass Transfer Correlations 16 2.4 Liquid Hold-Up 19 2.5 Flooding factor 21 Chapter 3 Mathematical Modeling 24 3.1 Introduction 24 3.2 Rotating Packed Bed Model 25 3.2 Material balance for the gas and liquid phase 26 3.3 Energy balance for the gas and liquid phases 31 3.5 Rate equations 32 3.6 Chemical kinetics 41 3.7 Model implementation 43 3.8 Other parameters 43 Chapter 4 Model Validation and Investigations 45 4.1 Experimental data 45 4.2 Effect of gas–liquid flow rates 47 4.3 Temperature Bulge 54 4.4 High loading 57 4.5 Effects of MEA concentrations 60 4.6 Chapter summary 63 Chapter 5 Experiments and Modeling on Absorption of CO2 by Dilute Ammonia in Packed Bed and Rotating Packed Bed 64 5.1 Introduction 64 5.2 Experiment for Dilute Aqueous Ammonia Solution 66 5.3 Model Development 70 5.4 Experimental Results and Discussions 76 5.5 Model Validation of PB and RPB Models for Dilute Aqueous Ammonia Solution 80 5.6 Chapter Summary 82 Chapter 6 A Comparison between Packed Beds and Rotating Packed Beds Using MEA and Dilute NH3 Solutions 84 6.1 Introduction 84 6.2 Process design 86 6.3 Apparent Intensification Effects at Different Throughput Rates 92 6.4 Effects of Mass Transfer between Dilute Aqueous Ammonia and MEA Solution 95 6.5 Chapter Summary 103 Chapter 7 Conclusions 105 Reference 108 Nomenclature 120 Appendix 127 Appendix A. Material and energy balances for the PB 127 Appendix B. The specification of packing type of RPB and PB 128 Appendix C. Profiles of gas and liquid temperatures, CO2 loading, and partial pressure of CO2 129

    Aboudheir, A., Tontiwachwuthikul, P., Chakma, A., Idem, R., 2003. Kinetics of the reactive absorption of carbon dioxide in high CO2-loaded, concentrated aqueous monoethanolamine solutions. Chemical Engineering Science 58, 5195-5210.
    Abu-Zahra, M.R., Niederer, J.P., Feron, P.H., Versteeg, G.F., 2007a. CO2 capture from power plants: Part II. A parametric study of the economical performance based on mono-ethanolamine. International journal of greenhouse gas control 1, 135-142.
    Abu-Zahra, M.R., Schneiders, L.H., Niederer, J.P., Feron, P.H., Versteeg, G.F., 2007b. CO2 capture from power plants: Part I. A parametric study of the technical performance based on monoethanolamine. International Journal of Greenhouse gas control 1, 37-46.
    Albo, J., Luis, P., Irabien, A., 2010. Carbon dioxide capture from flue gases using a cross-flow membrane contactor and the ionic liquid 1-ethyl-3-methylimidazolium ethylsulfate. Industrial & Engineering Chemistry Research 49, 11045-11051.
    Aspen, 2008. Rate-Based Model of the CO2 Capture Process by MEA using Aspen Plus.
    AspenTech, 2013a. Rate-based model of the CO2 capture process by MEA using Aspen Plus.
    AspenTech, 2013b. Rate-based model of the CO2 capture process by NH3 using Aspen Plus.
    Austgen, D.M., Rochelle, G.T., Peng, X., Chen, C.C., 1989. Model of vapor-liquid equilibria for aqueous acid gas-alkanolamine systems using the electrolyte-NRTL equation. Industrial & engineering chemistry research 28, 1060-1073.
    Bai, H., Yeh, A.C., 1997. Removal of CO2 greenhouse gas by ammonia scrubbing. Industrial & Engineering Chemistry Research 36, 2490-2493.
    Billet, R., Schultes, M., 1993. Modelling of packed tower performance for rectification, absorption and desorption in the total capacity range, the 3rd Korea-Japan Symposium, Seoul, Korea.
    Billet, R., Schultes, M., 1999. Prediction of mass transfer columns with dumped and arranged packings: updated summary of the calculation method of Billet and Schultes. Chemical Engineering Research and Design 77, 498-504.
    Blauwhoff, P., Versteeg, G., Van Swaaij, W., 1984. A study on the reaction between CO2 and alkanolamines in aqueous solutions. Chemical Engineering Science 39, 207-225.
    Burns, J.R., Jamil, J.N., Ramshaw, C., 2000. Process intensification: operating characteristics of rotating packed beds - determination of liquid hold-up for a high-voidage structured packing. Chemical Engineering Science 55, 2401-2415.
    Caplow, M., 1968. Kinetics of carbamate formation and breakdown. Journal of the American Chemical Society 90, 6795-6803.
    Chen, Y.-S., Liu, H.-S., 2002. Absorption of VOCs in a rotating packed bed. Industrial & engineering chemistry research 41, 1583-1588.
    Chen, Y., Chang, C., Su, W., Chen, C., Chiu, C., Yu, Y., Chiang, P., Chiang, S.I., 2004. Modeling ozone contacting process in a rotating packed bed. Industrial & engineering chemistry research 43, 228-236.
    Chen, Y.S., Lin, C.C., Liu, H.S., 2005. Mass transfer in a rotating packed bed with viscous newtonian and non-Newtonian fluids. Industrial & Engineering Chemistry Research 44, 1043-1051.
    Cheng, H.H., Shen, J.F., Tan, C.S., 2010. CO2 capture from hot stove gas in steel making process. International Journal of Greenhouse Gas Control 4, 525-531.
    Cheng, H.H., Tan, C.S., 2006. Reduction of CO2 concentration in a zinc/air battery by absorption in a rotating packed bed. Journal of Power Sources 162, 1431-1436.
    Cheng, H.H., Tan, C.S., 2009. Carbon dioxide capture by blended alkanolamines in rotating packed bed. Energy Procedia 1, 925-932.
    Danckwerts, P., 1979. The reaction of CO2 with ethanolamines. Chemical Engineering Science 34, 443-446.
    Darde, V., Thomsen, K., Van Well, W.J., Stenby, E.H., 2010. Chilled ammonia process for CO2 capture. International Journal of Greenhouse Gas Control 4, 131-136.
    DeCoursey, W., 1982. Enhancement factors for gas absorption with reversible reaction. Chemical Engineering Science 37, 1483-1489.
    DOE/NETL,2010. Carbon Dioxide Capture and Storage RD&D Roadmap.
    Donaldson, T.L., Nguyen, Y.N., 1980. Carbon dioxide reaction kinetics and transport in aqueous amine membranes. Industrial & Engineering Chemistry Fundamentals 19, 260-266.
    2015. Inventory of US greenhouse gas emissions and sinks: 1990-2013.
    Ergun, S., 1952. Fluid flow through packed columns. Chem. Eng. Prog. 48, 89-94.
    Froment, G.F., Bischoff, K.B., De Wilde, J., 1990. Chemical reactor analysis and design. Wiley New York.
    Gal, E., 2008. Ultra cleaning of combustion gas Including the removal of CO2. Google Patents.
    Hikita, H., Asai, S., Ishikawa, H., Honda, M., 1977. Kinetics of reactions of carbon-dioxide with monoethanolamine, diethanolamine and triethanolamine by a rapid mixing method. Chemical Engineering Journal and the Biochemical Engineering Journal 13, 7-12.
    Hoff, K.A., Juliussen, O., Falk-Pedersen, O., Svendsen, H.F., 2004. Modeling and experimental study of carbon dioxide absorption in aqueous alkanolamine solutions using a membrane contactor. Industrial & engineering chemistry research 43, 4908-4921.
    IEA, 2007. World energy outlook 2007. International Energy Agency, Paris.
    IEA, 2011. Harnessing variable renewables -- A guide to the balancing challenge. France: International Energy Agency, Paris.
    IEA, 2012. Energy technology perspectives 2012. International Energy Agency, Paris.
    Jassim, M.S., Rochelle, G., Eimer, D., Ramshaw, C., 2007. Carbon dioxide absorption and desorption in aqueous monoethanolamine solutions in a rotating packed bed. Ind Eng Chem Res 46, 2823-2833.
    Jilvero, H., Normann, F., Andersson, K., Johnsson, F., 2014. The rate of CO2 absorption in ammonia implications on absorber design. Industrial & Engineering Chemistry Research 53, 6750-6758.
    Kang, J.-L., Luo, Z.-J., Liu, J.-L., Sun, K., Wong, D.S.-H., Jang, S.-S., Tan, C.-S., Shen, J.-F., 2014a. Experiment and modeling studies on absorption of CO2 by dilute ammonia in rotating packed bed. Energy Procedia 63, 1308-1313.
    Kang, J.-L., Sun, K., Wong, D.S.-H., Jang, S.-S., Tan, C.-S., 2014b. Modeling studies on absorption of CO2 by monoethanolamine in rotating packed bed. International Journal of Greenhouse Gas Control 25, 141-150.
    Kelleher, T., Fair, J.R., 1996. Distillation studies in a high-gravity contactor. Industrial & engineering chemistry research 35, 4646-4655.
    Ko, J.J., Tsai, T.C., Lin, C.Y., Wang, H.M., Li, M.H., 2001. Diffusivity of nitrous oxide in aqueous alkanolamine solutions. Journal of Chemical & Engineering Data 46, 160-165.
    Kvamsdal, H.M., Jakobsen, J.P., Hoff, K.A., 2009. Dynamic modeling and simulation of a CO2 absorber column for post-combustion CO2 capture. Chemical Engineering and Processing 48, 135-144.
    Kvamsdal, H.M., Rochelle, G.T., 2008. Effects of the temperature bulge in CO2 absorption from flue gas by aqueous monoethanolamine. Industrial & Engineering Chemistry Research 47, 867-875.
    Lin, C.C., Chen, Y.S., Liu, H.S., 2000. Prediction of liquid holdup in countercurrent-flow rotating packed bed. Chemical Engineering Research & Design 78, 397-403.
    Lin, C.C., Liu, W.T., Tan, C.S., 2003. Removal of carbon dioxide by absorption in a rotating packed bed. Industrial & engineering chemistry research 42, 2381-2386.
    Liu, H.-S., Lin, C.-C., Wu, S.-C., Hsu, H.-W., 1996. Characteristics of a rotating packed bed. Industrial & engineering chemistry research 35, 3590-3596.
    Liu, J., Gao, H.-C., Peng, C.-C., Wong, D.S.-H., Jang, S.-S., Shen, J.-F., 2015. Aspen Plus rate-based modeling for reconciling laboratory scale and pilot scale CO2 absorption using aqueous ammonia. International Journal of Greenhouse Gas Control 34, 117-128.
    Lockett, M., 1995. Flooding of rotating structured packing and Its application to conventional packed-columns. Chemical engineering research & design 73, 379-384.
    Maski, I., Taisuto, N., Takashi, K., Shinsuke, N., 2011. MHI’s energy efficient flue gas CO2 capture technology and large scale CCS demonstration test at coal-fired power plants in USA. Mitsubishi Heavy Industries Technical Review 48, 26.
    McLarnon, C.R., Duncan, J.L., 2009. Testing of ammonia based CO2 capture with multi-pollutant control technology. Energy Procedia 1, 1027-1034.
    Onda, K., Takeuchi, H., Okumoto, Y., 1968. Mass transfer coefficients between gas and liquid phases in packed columns. Journal of chemical engineering of Japan 1, 56-62.
    Pinsent, B., Pearson, L., Roughton, F., 1956. The kinetics of combination of carbon dioxide with ammonia. Transactions of the Faraday Society 52, 1594-1598.
    Puranik, S., Vogelpohl, A., 1974. Effective interfacial area in irrigated packed columns. Chemical Engineering Science 29, 501-507.
    Puxty, G., Rowland, R., Attalla, M., 2010. Comparison of the rate of CO2 absorption into aqueous ammonia and monoethanolamine. Chemical Engineering Science 65, 915-922.
    Qian, Z., Xu, L., Cao, H., Guo, K., 2009. Modeling study on absorption of CO2 by aqueous solutions of N-Methyldiethanolamine in rotating packed bed. Industrial & Engineering Chemistry Research 48, 9261-9267.
    Qian, Z., Xu, L.B., Li, Z.H., Li, H., Guo, K., 2010. Selective absorption of H2S from a gas mixture with CO2 by aqueous N-Methyldiethanolamine in a rotating packed bed. Industrial & Engineering Chemistry Research 49, 6196-6203.
    Que, H., Chen, C.-C., 2011. Thermodynamic modeling of the NH3–CO2–H2O system with electrolyte NRTL model. Industrial & Engineering Chemistry Research 50, 11406-11421.
    Ramshaw, C., Mallinson, R., 1981. Mass transfer process.
    Reid, R.C., Prausnitz, J.M., Poling, B.E., 1987. The properties of gases and liquids.
    Renon, H., Prausnitz, J.M., 1968. Local compositions in thermodynamic excess functions for liquid mixtures. AIChE journal 14, 135-144.
    Resnik, K.P., Yeh, J.T., Pennline, H.W., 2004. Aqua ammonia process for simultaneous removal of CO2, SO2 and NOx. International Journal of Environmental Technology and Management 4, 89-104.
    Rhee, C.H., Kim, J.Y., Han, K., Ahn, C.K., Chun, H.D., 2011. Process analysis for ammonia-based CO2 capture in ironmaking industry. Energy Procedia 4, 1486-1493.
    Rochelle, G.T., 2009. Amine scrubbing for CO2 capture. Science 325, 1652-1654.
    Sander, R., 1999. Compilation of Henry's law constants for inorganic and organic species of potential importance in environmental chemistry. Max-Planck Institute of Chemistry, Air Chemistry Department.
    Sandilya, P., Rao, D., Sharma, A., Biswas, G., 2001. Gas-phase mass transfer in a centrifugal contactor. Industrial & engineering chemistry research 40, 384-392.
    Sherwood, T., Shipley, G., Holloway, F., 1938. Flooding velocities in packed columns. Industrial & Engineering Chemistry 30, 765-769.
    Singh, D., Croiset, E., Douglas, P.L., Douglas, M.A., 2003. Techno-economic study of CO2 capture from an existing coal-fired power plant: MEA scrubbing vs. O2/CO2 recycle combustion. Energy Conversion and Management 44, 3073-3091.
    Singh, S.P., Wilson, J.H., Counce, R.M., Lucero, A.J., Reed, G.D., Ashworth, R.A., Elliott, M.G., 1992. Removal of volatile organic compounds from groundwater using a rotary air stripper. Industrial & engineering chemistry research 31, 574-580.
    Snijder, E.D., te Riele, M.J., Versteeg, G.F., Van Swaaij, W., 1993. Diffusion coefficients of several aqueous alkanolamine solutions. Journal of Chemical and Engineering Data 38, 475-480.
    Stichlmair, J., Bravo, J.L., Fair, J.R., 1989. General model for prediction of pressure drop and capacity of countercurrent gas/liquid packed columns. Gas Separation & Purification 3, 19-28.
    Sun, B.C., Wang, X.M., Chen, J.M., Chu, G.W., Chen, J.F., Shao, L., 2009. Simultaneous absorption of CO2 and NH3 into water in a rotating packed bed. Industrial & Engineering Chemistry Research 48, 11175-11180.
    Tan, C.S., Chen, J.E., 2006. Absorption of carbon dioxide with piperazine and its mixtures in a rotating packed bed. Separation and purification technology 49, 174-180.
    Telikapalli, V., Kozak, F., Francois, J., Sherrick, B., Black, J., Muraskin, D., Cage, M., Hammond, M., Spitznogle, G., 2011. CCS with the Alstom chilled ammonia process development program–Field pilot results. Energy Procedia 4, 273-281.
    Tung, H.-h., Mah, R.S.H., 1985. Modeling liquid mass-transfer in higee separation process. Chemical Engineering Communications 39, 147-153.
    Van Krevelen, D., Hoftijzer, P., 1948. Kinetics of gas‐liquid reactions part I. General theory. Recueil des travaux chimiques des Pays-Bas 67, 563-586.
    Versteeg, G., Van Dijck, L., Van Swaaij, W., 1996. On the kinetics between CO2 and alkanolamines both in aqueous and non-aqueous solutions. An overview. Chemical Engineering Communications 144, 113-158.
    Yan, Z.-y., Lin, C., Ruan, Q., 2012a. Hydrodynamics in a rotating packed bed. I. A novel experimental method. Industrial & Engineering Chemistry Research 51, 10472-10481.
    Yan, Z.-y., Ruan, Q., Lin, C., 2012b. Hydrodynamics in a rotating packed bed. II. A mathematical model. Industrial & Engineering Chemistry Research 51, 10482-10491.
    Yang, H., Xu, Z., Fan, M., Gupta, R., Slimane, R.B., Bland, A.E., Wright, I., 2008. Progress in carbon dioxide separation and capture: A review. Journal of Environmental Sciences 20, 14-27.
    Yeh, A.C., Bai, H., 1999. Comparison of ammonia and monoethanolamine solvents to reduce CO2 greenhouse gas emissions. Science of the Total Environment 228, 121-133.
    Yeh, J.T., Resnik, K.P., Rygle, K., Pennline, H.W., 2005. Semi-batch absorption and regeneration studies for CO2 capture by aqueous ammonia. Fuel Processing Technology 86, 1533-1546.
    Yi, F., Zou, H.K., Chu, G.W., Shao, L., Chen, J.F., 2009. Modeling and experimental studies on absorption of CO2 by Benfield solution in rotating packed bed. Chemical Engineering Journal 145, 377-384.
    Yokoyama, T., 2004. Japanese R&D on large-scale CO2 capture.
    Yu, C.H., Cheng, H.H., Tan, C.S., 2012a. CO2 capture by alkanolamine solutions containing diethylenetriamine and piperazine in a rotating packed bed. International Journal of Greenhouse Gas Control 9, 136-147.
    Yu, C.H., Huang, C.H., Tan, C.S., 2012b. A review of CO2 capture by absorption and adsorption. Aerosol Air Qual. Res 12, 745-769.
    Yu, H., Morgan, S., Allport, A., Cottrell, A., Do, T., McGregor, J., Wardhaugh, L., Feron, P., 2011. Results from trialling aqueous NH3 based post-combustion capture in a pilot plant at Munmorah power station: Absorption. Chemical Engineering Research and Design 89, 1204-1215.
    Yu, H., Qi, G., Wang, S., Morgan, S., Allport, A., Cottrell, A., Do, T., McGregor, J., Wardhaugh, L., Feron, P., 2012c. Results from trialling aqueous ammonia-based post-combustion capture in a pilot plant at Munmorah Power Station: Gas purity and solid precipitation in the stripper. International Journal of Greenhouse Gas Control 10, 15-25.
    Zhang, M., Guo, Y., 2013. Process simulations of large-scale CO2 capture in coal-fired power plants using aqueous ammonia solution. International Journal of Greenhouse Gas Control 16, 61-71.
    Zhang, Y., Que, H., Chen, C.-C., 2011. Thermodynamic modeling for CO2 absorption in aqueous MEA solution with electrolyte NRTL model. Fluid Phase Equilibria 311, 67-75.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE