研究生: |
高敏庭 Kao, Min-Ting |
---|---|
論文名稱: |
雙閘極蕭特基能障矽鍺電荷捕捉式記憶體之研究 The Study of the Double Gate Schottky Barrier SiGe Charge Trapping Memories |
指導教授: |
連振炘
Lien, Chen-Hsin |
口試委員: |
施君興
Shih, Chun-Hsing 陳建亨 Chen, Jiann-Heng |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2018 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 59 |
中文關鍵詞: | 雙閘極結構 、蕭特基能障 、熱電子注入 、矽鍺 |
外文關鍵詞: | Double gate, Schottky barrier, Hot electron injection, SiGe |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著物聯網的到來,低功耗、高寫入速度的記憶體元件逐漸受到大眾消費者的關注。另外,對電晶體的通道長度做微縮的現況下,許多提升元件的效能被提出來,除了結構上的改變,改變通道材料的想法也被提出。
本論文建構出雙閘極蕭特基能障源/汲極的O-N-O電荷捕捉式記憶體,並將之與雙閘極的傳統摻雜源/汲極的O-N-O電荷捕捉式記憶體比較。發現蕭特基能障元件的注入效率較傳統型元件高出許多。另外也透過文獻的比較,來估計出兩種記憶體元件的寫入時間:在VDS為3V,VGS為6V時,蕭特基元件為45.7us;在VDS為6V,VGS為6V時,傳統元件為68.7us,速度上確實是蕭特基元件快了33%。另一方面,在同樣是雙閘極金屬蕭特基能障源/汲極的結構中,我們比較了矽通道和不同組成比例的矽鍺(Si1-xGex)通道的注入效率。發現若是固定金屬的功函數為4.27eV時,矽鍺的注入效率大於矽的注入效率,並且以x=0.7時為最高;而若是固定蕭特基能障高度為0.2eV時,則是矽通道元件擁有較高的注入效率,矽鍺通道元件的注入效率則是隨著x比例增加而減少。
Since the coming of IoT era, low power consumption, high program speed memory device gains lots of interest. Moreover, the ongoing scaling on transistor channel length results not only in new structure strategy, but also in the replacement issue of channel material.
In this thesis, we establish the structure of double gate Schottky barrier source/drain O-N-O charge trapping memory cell (SBC), and compare it with double gate conventionally doped source/drain O-N-O charge trapping memory cell (CVC). We find that SBC has higher injection efficiency than CVC does. Additionally, we also compare the above devices with some existing references, and estimate the program time. At VDS=3V, VGS=6V, the program time of SBC is 45.7us. At VDS=6V, VGS=6V, the program time of CVC is 68.7us. SBC is 33% faster than CVC. Also, in the same double gate SB source/drain structure, we compare injection efficiency between Si channel and different x ratio of Si1-xGex channel. At fixed metal workfunction m=4.27eV, injection efficiency is higher in SiGe channel, especially at x=0.7. At fixed SB height b0=0.2eV, Si channel device has higher injection efficiency, injection efficiency decrease with increasing x in SiGe channel device.
[1] S. E. Thompson, “Moore’s Law: the Future of Si Microelectronics,” Material today, vol. 9, pp. 20-25, 2006.
[2] P. Pavan, R. Bez, P. Olivo and E. Zononi, ”Flach memory cells - an overview,” in Proceeding of the IEEE, vol. 85, no. 8, pp. 1248-1271, Aug. 1997.
[3] International Techmology Roadmap for Semiconductors, ITRS, Denver, CO, USA 2013.
[4] R. Benz, E. Camerlenghi, A. Modelli, and A. Visconi, “Introduction to Flash memory,” Proceeding of the IEEE, vol. 91, no. 4, pp. 489-502, Apr. 2003.
[5] B. Eitan, P. Pavan, I. Bloom, E. Aloni, A. Frommer, and D. Finzi, “NROM: a novel localized trapping, 2-bit nonvolatile memory cell,” IEEE Electron Device Letters, vol. 21, no. 11, pp. 543-545, Nov. 2000.
[6] E. Lusky, Y. Shacham-Diamand, I. Bloom, and B. Eitan, “Characterization of channel hot electron injection by the subthreshold slope of NROMTM device,” IEEE Electron Device Letters, vol. 22, no. 11, pp. 556-558, Nov. 2001.
[7] L. Larcher, P. Pavan, and B. Eitan, “On the physical mechanism of the NROM erase,” IEEE Transactions on Electron Devices, vol. 51, no. 10, pp. 1593-1599, Oct. 2004.
[8] J. M. Larson and J. P. Snyder, “Overview and status of metal S/D Schottky-barrier MOSFET technology,” IEEE Transactions on Electron Devices, vol. 53, no. 5, pp. 1048-1058, May. 2006.
[9] M. Zhang, J. Knoch, J. Appenzeller, and S. Mantl, “Improved carrier injection in ultrathin-body SOI Schottky-barrier MOSFETs,” IEEE Electron Device Letters, vol. 28, no. 3, pp. 223-225, Mar. 2007.
[10] S. Zhu, J. Chen, M.-F. Li, S. J. Lee, J. Singh, C. X. Zhu, A. Du, C. H. Tung, A. Chin, and D. L. Kwong, “N-type Schottky barrier source/drain MOSFET using ytterbium silicide,” IEEE Electron Device Letters, vol. 25, no. 8, pp. 565-567, Aug. 2004.
[11] C.-H. Shih, and J.-T. Liang, “Nonvolatile Schottky barrier multibit cell with source-side injected programming and reverse drain-side hole erasing,” IEEE Transactions on Electron Devices, vol. 57, no. 8, pp. 1774-1780, Aug. 2010.
[12] C.-H. Shih, W. Chang, Y.-X. Luo, J.-T. Liang, M.-K. Huang, N. D. Chien, R.-K. Shia, J.-J. Tsai, W.-F. Wu, and C. Lien, “Schottky Barrier Silicon Nanowire SONOS Memory with ultralow programming and erasing voltages,” IEEE Electron Device Letters, vol. 32, no. 11, pp. 1477-1479, Nov. 2011.
[13] C.-H. Shih, S.-P. Yeh, J.-T. Liang, and Y.-X. Luo, “Source-side injection Schottky Barrier Flash memory cells,” Semiconductor Science and Technology, vol. 24, no. 2, pp. 025013, Feb. 2009.
[14] K. Uchida, K.Matsuzawa, J. Koga, S.Takagi, and A. Toriumi, “Enhancement of hot-electron generation rate in Schottky source metal-oxide-semiconductor field-effect transistors,” Applied Physics Letters, vol. 76, no. 26, pp. 3992-3994, Jun. 2000.
[15] C.-H. Shih, J.-T. Liang, J.-S. Wang, and N. D. Chien, “A source-side injection lucky electron model for Schottky barrier metal-oxide-semiconductor devices,” IEEE Electron Device Letters, vol. 32, no. 10, pp. 1331-1333, Oct. 2011.
[16] Chenming Hu, “Lucky-electron Model of Channel Hot Electron Emission,” IEDM Tech. Dig., pp. 22-25, 1979.
[17] S. Tam, P.-K. Ko, and C. Hu, “Lucky-electron model of channel hot electron injection in MOSFET’s,” IEEE Transactions on Electron Devices, vol. 31, no. 9, pp. 1116-1125, Sep. 1984.
[18] Yoshikawa K., Mori S., Sakagami E., Ohshima Y., Kaneko Y., and Arai N., “Lucky-hole injection induced by band-to-band tunneling leakage in stacked gate transistors,” IEDM Tech. Dig., pp. 577-580, 1990.
[19] K. Matsuzawa, K. Uchida, and A. Nishiyama, “A unified simulation of Schottky and ohmic contacts,” IEEE Transactions on Electron Devices, vol. 47, no. 1, pp. 103-108, Jan. 2000.
[20] M. Ieong, P. M. Solomon, S. E. Laux, H. P. Wong, and D. Chidambarrao, “Comparison of raised and Schottky source/drain MOSFETs using a novel tunneling contact model,” in IEEE International Electron Devices Meeting, 1998, pp. 733-736.
[21] A. R. Brown, J. R. Watling, and A. Asenov, “A 3-D atomistic study of archetypal double gate MOSFET structures,” J. Comput. Electron., vol. 1, nos. 1-2, pp. 165-169, 2002.
[22] D. A. Neamen, “Semiconductor Physics And Devices,” 4th edition, McGraw-Hill, New York, 2012.
[23] W. Chang, C.-H. Shih, Y.-X. Luo, J.-K. Hsia, W.-F. Wu, C. Lien, “A Localized Two-Bit/Cell Nanowire SONOS Memory Using Schottky Barrier Source-Side Injected Programming,” IEEE Trans. Nanotechnology, vol. 12, no. 5, pp. 760-765, Sep. 2013.
[24] D. Guo et al., “FINFET technology featuring high mobility SiGe channel for 10nm and beyond”, VLSI Technology, 2016 IEEE Symposium on VLSI Technology, Honolulu, HI, pp. 1-2, 2016.
[25] Kao, K.-H., Verhulst, A.S., Vandenberghe, W.G., et al.: ‘Direct and indirect band-to-band tunneling in germanium-based TFETs’, IEEE Trans. Electron Dev., 2012, 59, (2), pp. 292–301
[26] R. Braunstein, A. R. Moore, and F. Herman, “Intrinsic optical absorption in germanium–silicon alloys,” Phys. Rev., vol. 109, no. 3, pp. 695–710, Feb. 1958.
[27] S. M. Sze, “Physics of Semiconductor Devices,” 2nd ed., Wiley, New York, 1981, pp. 17, 18, 850.
[28] M. V. Fischetti and S. E. Laux, “Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys,” J. Appl. Phys., vol. 80, no. 4, pp. 2234–2252, Aug. 1996.
[29] S. K. Chun and K. L. Wang, “Effective mass and mobility of holes in strained Si1−xGex layers on (001) Si1−yGey substrate,” IEEE Trans. Electron Devices, vol. 39, no. 9, pp. 2153–2164, Sep. 1992.
[30] Michael E. Levinshtein, Sergey L. Rumyantsev, Michael S. Shur, “Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, SiC, SiGe,” John Wiley & Sons, Inc, New York, 2001.