研究生: |
陳宥輔 Chen, You-Fu |
---|---|
論文名稱: |
成份對於氮化鈦鋯硬膜之破裂靭性的影響 Effect of Composition on Fracture Toughness of Ti1-xZrxN Hard Coatings |
指導教授: |
黃嘉宏
Huang, Jia-Hong 喻冀平 Yu, Ge-Ping |
口試委員: |
李志偉
林郁洧 |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 104 |
中文關鍵詞: | 破裂靭性 、氮化鈦鋯硬膜 |
外文關鍵詞: | Fracture toughness, Ti1-xZrxN hard coating |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究的目的是利用自身能量誘發破裂方法來量測氮化鈦鋯硬膜的破裂靭性並研究成份對破裂靭性的影響,且藉此找到最佳靭性的成分區間。本研究選用三元氮化鈦鋯硬膜為模式材料,由於其在不同氮鈦比例下仍能保持單相的晶體結構。利用非平衡磁控濺鍍法沉積三種不同比例的氮化鈦鋯硬膜,分別為鋯/(鋯+鈦)=0.25、0.55、0.85,來探討成分對破裂靭性的影響。在自身能量誘發破裂方法中,殘留應力由光學曲率法測量、薄膜楊氏係數由奈米壓印獲得,而薄膜厚度由掃描式電子顯微鏡量測。由破裂前的殘留應力與膜厚可以計算出薄膜中的儲存能,當此儲存能足以產生裂縫時,其數值即為破裂靭性。實驗結果顯示氮化鈦鋯薄膜的破裂靭性隨鋯成分變化,其範圍在26.0 J/m2 到 48.7 J/m2;在鋯/(鋯+鈦)達0.85時,破裂靭性達最大值48.7 J/m2。添加鋯原子進入氮化鈦中有利增加破裂靭性,而鈦與鋯原子的大小差異在增加破裂靭性上扮演重要的角色。再者發現在富鋯端的氮化鈦鋯薄膜增加破裂靭性的程度大於富鈦端,其成因可能是由於薄膜可以儲存應變能的能力不同。自身能量誘發破裂方法可以適用於破裂發生於薄膜之中,但若裂縫延伸到基板,則基板破裂的能量須納入破裂靭性的考慮。
The objectives of this study were to measure the fracture toughness of Ti1-xZrxN hard coatings using the internal energy induced cracking (IEIC) method and investigate the effect of composition on the fracture toughness, from which the optimum composition for fracture toughness could be attained. Ti1-xZrxN was selected to be the model system, because Ti1-xZrxN remained single phase structure in the entire compositional range when deposited at temperatures below 500 C. Three compositions of Ti1-xZrxN, x=0.25, 0.55 and 0.85, were deposited by unbalance magnetron sputtering (UBMS). The IEIC method involved the residual stress measured by the laser curvature method, Young’s modulus obtained from nanoindentation and the film thickness from SEM cross-sectional image. The residual stress and film thickness before specimen fracture were used to determine the elastic stored energy (Gs), from which the fracture toughness could be derived. The resultant fracture toughness of Ti1-xZrxN varied with Zr fraction, ranging from 26.0 to 48.7 J/m2, and reaching a maximum for Ti0.15Zr0.85N. Adding Zr atoms into TiN could effectively increase the fracture toughness. The atomic size difference of Zr and Ti may play an important role on increase of fracture toughness. The increase of fracture toughness for Ti0.15Zr0.85N was higher than that for Ti0.75Zr0.25N. This asymmetrical behavior could be attributed to the difference in lattice constants between Ti-rich and Zr-rich compounds, in which the capability of increasing elastic stored energy may be higher for a smaller Ti atom incorporate into a larger ZrN lattice. It is also found that IEIC method can be applied as long as the cracking occurs inside the film. If the cracks penetrate into the substrate, the contribution of substrate cracking should be considered.
[1]F.O. P. Duwez, "Phase Relationships in the Binary Systems of Nitrides and Carbides of Zirconium, Columbium, Titanium, and Vanadium", Journal of The Electrochemical Society 97/10 (1950) 299.
[2]G. Abadias, L. Koutsokeras, A. Siozios, P. Patsalas, "Stress, phase stability and oxidation resistance of ternary Ti–Me–N (Me= Zr, Ta) hard coatings", Thin Solid Films 538 (2013) 56.
[3]O. Knotek, A. Barimani, "On spinodal decomposition in magnetron-sputtered (Ti, Zr) nitride and carbide thin films", Thin Solid Films 174 (1989) 51.
[4]A. Hörling, J. Sjölén, H. Willmann, T. Larsson, M. Odén, L. Hultman, "Thermal stability, microstructure and mechanical properties of Ti1-xZrxN thin films", Thin Solid Films 516/18 (2008) 6421.
[5]Chi-You CHen, Jia-Hong Huang, Ge-Ping Yu, "Characterization of structure and mechanical properties of nano-crystalline TiZrN films deposited by unbalanced magnetron sputtering: effect of Ti and Zr target current", Master Thesis, National Tsing Hua University, R.O.C, (2012).
[6]I. Sakamoto, S. Maruno, P. Jin, "Preparation and microstructure of reactively sputtered Ti1-xZx N films", Thin Solid Films 228/1 (1993) 169.
[7]O. Knotek, F. Löffler, G. Krämer, "Cutting performance of multicomponent and multilayer coatings on cemented carbides and cermets for interrupted cut machining", International Journal of Refractory Metals and Hard Materials 14/1 (1996) 195.
[8]O. Knotek, F. Löffler, G. Krämer, "Arc-deposited Ti-Zr-N coatings on cemented carbides for use in interrupted cutting", Surface and Coatings technology 49/1 (1991) 325.
[9]K. Purushotham, L. Ward, N. Brack, P.J. Pigram, P. Evans, H. Noorman, R.R. Manory, "The effect of MEVVA ion implantation of Zr on the corrosion behaviour of PVD TiN coatings", Corrosion Science 50/1 (2008) 8.
[10]J. Kourtev, R. Pascova, "Reactively magnetron sputtered Ti1-xAlxN thin films with enhanced mechanical properties", Journal of Vacuum Science & Technology 47/10 (1996) 1197.
[11]P. Jindal, A. Santhanam, U. Schleinkofer, A. Shuster, "Performance of PVD TiN, TiCN, and TiAlN coated cemented carbide tools in turning", International Journal of Refractory Metals and Hard Materials 17/1 (1999) 163.
[12]G. Abadias, L. Koutsokeras, S. Dub, G. Tolmachova, A. Debelle, T. Sauvage, P. Villechaise, "Reactive magnetron cosputtering of hard and conductive ternary nitride thin films: Ti–Zr–N and Ti–Ta–N", Journal of Vacuum Science & Technology 28/4 (2010) 541.
[13]ASTME-399, "Standard Test for Plane Strain Fracture Toughness of Metallic Materials", American Society for Testing and Materials (1987) 412.
[14]G.E. Dieter, "Mechanical Metallurgy", MacGraw Hill, New York, USA, (1986) 98.
[15]S. Zhang, D. Sun, Y.Q. Fu, H.J. Du, "Toughness measurement of thin films: a critical review", Surface and Coatings Technology 198/1-3 (2005) 74.
[16]Z. Jiang, F. Lu, W. Tang, S. Wang, Y. Tong, T. Huang, J. Liu, "Accurate measurement of fracture toughness of free standing diamond films by three-point bending tests with sharp pre-cracked specimens", Diamond and Related Materials 9/9 (2000) 1734.
[17]M.D. Drory, R.H. Dauskardt, A. Kant, R.O. Ritchie, "Fracture of synthetic diamond", Journal of Applied Physics 78/5 (1995) 3083.
[18]D. Gianola, C. Eberl, "Micro-and nanoscale tensile testing of materials", JOM 61/3 (2009) 24.
[19]M. Manoharan, A. Desai, M. Haque, "Fracture toughness characterization of advanced coatings", Journal of Micromechanics and Microengineering 19/11 (2009) 115004.
[20]S. Massl, W. Thomma, J. Keckes, R. Pippan, "Investigation of fracture properties of magnetron-sputtered TiN films by means of a FIB-based cantilever bending technique", Acta Materialia 57/6 (2009) 1768.
[21]S. Zhang, D. Sun, Y.Q. Fu, H.J. Du, "Toughness measurement of ceramic thin films by two-step uniaxial tensile method", Thin Solid Films 469 (2004) 233.
[22]G. Jaeger, I. Endler, M. Heilmaier, K. Bartsch, A. Leonhardt, "A new method of determining strength and fracture toughness of thin hard coatings", Thin Solid Films 377 (2000) 382.
[23]A.A. Volinsky, J.B. Vella, W.W. Gerberich, "Fracture toughness, adhesion and mechanical properties of low-K dielectric thin films measured by nanoindentation", Thin Solid Films 429/1-2 (2003) 201.
[24]G. Pharr, "Measurement of mechanical properties by ultra-low load indentation", Materials Science and Engineering: A 253/1 (1998) 151.
[25]L. Zhang, H. Yang, X. Pang, K. Gao, A.A. Volinsky, "Microstructure, residual stress, and fracture of sputtered TiN films", Surface and Coatings Technology 224 (2013) 120.
[26]X.D. Li, D.F. Diao, B. Bhushan, "Fracture mechanisms of thin amorphous carbon films in nanoindentation", Acta Materialia 45/11 (1997) 4453.
[27]Z. Xia, W. Curtin, B. Sheldon, "A new method to evaluate the fracture toughness of thin films", Acta materialia 52/12 (2004) 3507.
[28]X.D. Li, B. Bhushan, "Measurement of fracture toughness of ultra-thin amorphous carbon films", Thin Solid Films 315/1-2 (1998) 214.
[29]X.M. Zhang, S. Zhang, "Rethinking the role that the "step" in the load-displacement curves can play in measurement of fracture toughness for hard coatings", Thin Solid Films 520/9 (2012) 3423.
[30]M.K. Small, W. Nix, "Analysis of the accuracy of the bulge test in determining the mechanical properties of thin films", Journal of Materials Research 7/06 (1992) 1553.
[31]J. Vlassak, W. Nix, "A new bulge test technique for the determination of Young's modulus and Poisson's ratio of thin films", Journal of Materials Research 7/12 (1992) 3242.
[32]O. Tabata, K. Kawahata, S. Sugiyama, I. Igarashi, "Mechanical property measurements of thin films using load-deflection of composite rectangular membrane", Micro Electro Mechanical Systems, Proceedings, An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots, IEEE (1989) 152.
[33]Y. Xiang, J. McKinnell, Wie-Ming Ang, J.J. Vlassak, "Measuring the fracture toughness of ultra-thin films with application to AlTa coatings", International Journal of Fracture 144/3 (2007) 173.
[34]B. Merle, M. Göken, "Fracture toughness of silicon nitride thin films of different thicknesses as measured by bulge tests", Acta Materialia 59/4 (2011) 1772.
[35]V. Hatty, H. Kahn, J. Trevino, C. Zorman, M. Mehregany, R. Ballarini, A. Heuer, "Fracture toughness of low-pressure chemical-vapor-deposited polycrystalline silicon carbide thin films", Journal of Applied Physics 99/1 (2006) 013517.
[36]V. Hatty, H. Kahn, A.H. Heuer, "Fracture toughness, fracture strength, and stress corrosion cracking of silicon dioxide thin films", Journal of Microelectromechanical Systems 17/4 (2008) 943.
[37]H. Kahn, R. Ballarini, J. Bellante, A. Heuer, "Fatigue failure in polysilicon not due to simple stress corrosion cracking", Science 298/5596 (2002) 1215.
[38]S. King, J. Gradner, "Intrinsic stress fracture energy measurements for PECVD thin films in the SiOxCyNz:H system", Microelectronics Reliability 49/7 (2009) 721.
[39]An-Ni Wang, Ge-Ping Yu, Jia-Hong Huang, "Fracture toughness measurement on TiN hard coatings using internal energy induced cracking", Surface and Coatings Technology 239 (2014) 20.
[40]Yu-Hsing Chen, Ge-Ping Yu, Jia-Hong Huang, "Fracture Toughness Measurement of ZrN Hard Coatings", Master Thesis, National Tsing Hua University, R.O.C, (2012).
[41]L.B. Freund, S. Suresh, "Thin film materials : stress, defect formation, and surface evolution", Cambridge University Press, Cambridge, England, (2003).
[42]A.A. Griffith, "The Phenomena of Rupture and Flow in Solids", Philosophical Transactions of the Royal Society of London. Series A, Containing Papersof a Mathematical or Physical Character 221 (1921) 163.
[43]D. Broek, "Elementary engineering fracture mechanics", Boston Hingham, Mass., Martinus Nijhoff; Distributed by Kluwer Boston (1982).
[44]M.P. Manoharan, A.V. Desai, M.A. Haque, "Fracture toughness characterization of advanced coatings", Journal of Micromechanics and Microengineering 19/11 (2009).
[45]N. Alexandre, M. Desmaisonbrut, F. Valin, M. Boncoeur, "Mechanical properties of hot isostatically pressed zirconium nitride materials", Journal of Materials Science. 28/9 (1993) 2385.
[46]A. Hoerling, J. Sjölén, H. Willmann, T. Larsson, M. Odén, L. Hultman "Thermal stability, microstructure and mechanical properties of Ti1-xZrxN thin films", Thin Solid Films 516/18 (2008) 6421.
[47]Yu-Wei Lin, Ge-Ping Yu, Jia-Hong Huang "Effect of nitrogen flow rate on properties of nanostructured TiZrN thin films produced by radio frequency magnetron sputtering", Thin Solid Films 518/24 (2010) 7308.
[48]R.W. Hertzberg, "Deformation and Fracture Mechanics of Engineering Materials", J. Wiley & Sons Ltd. (1996) 315.
[49]B.R. Lawn, "Fracture of brittle solids", Cambridge university press, (1993).
[50]M. Ohring, "The Materials Science of Thin Films", Academic Press, San Diego, USA, (1992).
[51]P. Scherrer, Göttinger Nachrichten Gesell, "Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen", Mathematisch-Physikalische Klasse 1918 (1918) 98.
[52]L.V. Azaroff, M.J. Buerger, "The powder method in X-ray crystallography McGraw-Hill", New York, USA, (1958) 233.
[53]D.A. Shirley,"High-resolution X-Ray photomission spectrum of the valence bands of gold", Physical Review B 5/12 (1972) 4709.
[54]W.C. Oliver, G.M. Pharr, "An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments", Journal of Materials Research 7/6 (1992) 1564.
[55]G.G. Stoney, "The tension of metallic films deposited by electrolysis", Proc. R. soc. Lond. Ser. A-Contain. Pap. Math. Phys. Character 82/553 (1909) 172.
[56]"Physical properties of Silicon (Si)", Ioffe Institute Database. Retrieved on 2011-05-27.
[57]C.H. Ma, J.H. Huang, H. Chen, "Residual stress measurement in textured thin film by grazing-incidence X-ray diffraction", Thin Solid Films 418/2 (2002) 73.
[58]B.B. He, "Two-dimensional x-ray diffraction", John Wiley & Sons Ltd., New Jersey, USA, (2009).
[59]V. Hauk, B. Kruger, "A new approach to evaluate steep stress gradients principally using layer removal", Ecrs 5: Proceedings of the Fifth European Conference on Residual Stresses 347-3 (2000) 80.
[60]J. Koo, J. Valgur, "Layer growing/removing method for the determination of residual stresses in thin inhomogeneous discs", Ecrs 5: Proceedings of the Fifth European Conference on Residual Stresses 347-3 (2000) 89.
[61]I. Kraus, G. Gosmanova, "On X-ray measurements of residual-stresses in materials with lattice strain gradient", Czechoslovak Journal of Physics 39/7 (1989) 751.
[62]C.L.A. Ricardo, M. D'Incau, P. Scardi, "Revision and extension of the standard laboratory technique for X-ray diffraction measurement of residual stress gradients", Journal of Applied Crystallography 40 (2007) 675.
[63]H.K. Tonshoff, J. Ploger, H. Seegers, "Determination of residual stress gradients in brittle materials using an improved spline algorithm", Ecrs 5: Proceedings of the Fifth European Conference on Residual Stresses 347-3 (2000) 83.
[64]V.I.I. G. Abadias, L. Belliard, Ph. Djemia, "Structure, phase stability and elastic properties in the Ti1–xZrxN thin-film system: Experimental and computational studies", Acta Materialia 60/15 (2012) 5601.
[65]S.M. Sez, VLSI Technology, AT&T Bell Lab. Murry Hill, New Jersey (1983) 184.
[66]ASTM, Symposium on Color, American Society for Testing Materials, Philadelphia, (1941) 3.
[67]Yu-Wei Lin, Jia-Hong Huang, Ge-Ping Yu, "Microstructure and corrosion resistance of nanocrystalline TiZrN films on AISI 304 stainless steel substrate", Journal of Vacuum Science & Technology A 28/4 (2010) 774.
[68]A. Leyland, A. Matthews, "On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour", Wear 246/1 (2000) 1.
[69]S.W. King, G.A. Antonelli, "Simple bond energy approach for non-destructive measurements of the fracture toughness of brittle materials", Thin Solid Films 515/18 (2007) 7232.
[70]S. Zhang, D. Sun, Y.Q. Fu, H.J. Du, "Toughening of hard nanostructural thin films: a critical review", Surface and Coatings Technology 198/1-3 (2005) 2.
[71]A. Karimi, Y. Wang, T. Cselle, M. Morstein, "Fracture mechanisms in nanoscale layered hard thin films", Thin solid films 420 (2002) 275.
[72]N.N. Greenwood, A. Earnshaw, "Chemistry of the Elements", Elsevier, (1997).
[73]P. Wellner, O. Kraft, G. Dehm, J. Andersons, E. Arzt, "Channel cracking of β-NiAl thin films on Si substrates", Acta materialia 52/8 (2004) 2325.
[74]T.Y. Tsui, A.J. McKerrow, J.J. Vlassak, "Constraint effects on thin film channel cracking behavior", Journal of materials research 20/09 (2005) 2266.
[75]F. Ericson, S. Johansson, J.-Å. Schweitz, "Hardness and fracture toughness of semiconducting materials studied by indentation and erosion techniques", Materials Science and Engineering: A 105 (1988) 131.