簡易檢索 / 詳目顯示

研究生: 李驊軒
Li, Hua-Xuan
論文名稱: 三維晶片中之電源電壓用穿矽連接孔測試架構與方法
Architecture and Method for Testing Power-Delivery TSVs in 3D-ICs
指導教授: 黃錫瑜
Huang, Shi-Yu
口試委員: 李進福
蒯定明
周永發
李建模
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 35
中文關鍵詞: 穿矽連接孔電源電壓傳輸環形震盪器電源電壓落差監測製程變異校正
外文關鍵詞: TSV, Power Delivery, Ring Oscillator, Voltage-Drop Monitoring, Process Variation Calibration
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在三維晶片技術中,不同的晶片可經由穿矽連接孔連接,以堆曡的方式整合而成,其中有許多的穿矽連接孔是應用於晶片的電源接腳,將電源電壓傳送至各個晶片,而非應用於傳遞訊號。在已發表的文獻中,所提出的這些測試方法,還尚未深入探討關於電源電壓用穿矽連接孔的檢測技術。
    在本篇論文裡,我們提出一個電源電壓用穿矽連接孔的測試架構與方法,在生產測試階段,藉由埋藏在電源電壓用穿矽連接孔的端點上,以環形震盪器為基礎的監測電路(建立在可調整的測試架構上,以因應大量的電源電壓用穿矽連接孔),監測是否有過多的電源電壓落差。我們所提出方法的特色之一,採用[15]所發表的量測技術,可以監測動態的峰值電源電壓落差(藉由支援高取樣率的監測電路,比如1 GHz),有別於先前同樣以環形震盪器為基礎監測電路的方法,只是監測一段長時間的平均電源電壓落差。為了提高測試結果的精準度,量測與資料分析,都應考量每個監測電路的製程變異,我們所提出方法的另一項關鍵特色,在資料分析的階段,先進行監測電路的製程變異校正,再分析資料的監測結果。檢測出這些發生在電源電壓傳遞網路上的微小缺陷是必要的,假使這些缺陷未被檢測出來,系統在運作的過程中,便可能因過多的電源電壓落差,發生一個短暫的時序故障。


    Many TSVs in a 3D IC are not used for signal transmission but for power delivery. Techniques needed to detect them have not been studied in-depth in the literature. In this work, we present a test method for power-delivery TSVs, by embedding ring-oscillator (RO) based monitors (in a scalable architecture) to detect if there is any excessive voltage-drop at the end of any TSV during a manufacturing test session. One key feature as opposed to previous RO-based methods is that our approach is able to detect the worst-case dynamic voltage-drop (with a high sampling rate monitor, e.g., 1GHz), rather than just the average voltage-drop over a long period of time. This is essential in order to detect small defects inside the power delivery network. These defects, if not detected, could set off a transient timing failure when the IC is operated in a system.

    Abstract i 摘要 ii 誌謝 iii Content iv List of Figures vi List of Tables viii Chapter 1 Introduction 1 1.1 Introduction 1 1.2 Thesis Organization 4 Chapter 2 Preliminaries 5 Chapter 3 Proposed Method 7 3.1 Overall Test Architecture 7 3.2 Calibration scheme for Time-to-Digital Converter 10 3.3 Test Flow 12 3.4 Data Analytics 14 3.5 Operation 17 Chapter 4 Experimental Setup and Results for Detecting The Voltage Drop across A Defective TSV 19 4.1 Experimental Setup and Results 19 4.2 The Effect on The Process Calibration Scheme 22 4.3 Random Process Variation Case by Monte Carlo Simulation for 13-Stage Ring Oscillator 23 Chapter 5 Test Chip and Experimental Results of Fault Injection 24 5.1 Test Chip 24 5.2 Test Case Analyzing of The Test Chip 28 5.3 Area Overhead Estimation 30 5.4 Performance Comparison 31 Chapter 6 Conclusion 32 Bibliography 33

    [1] S. L. Wright, et al, "Characterization of Micro-bump C4 Interconnects for Si-Carrier SOP Applications," Proc. of Electronic Components and Technology Conf., pp. 633-640, 2006.
    [2] B. Banijamali, S. Ramalingam, K Nagarajan, and R. Chaware, “Advanced Reliability Study of TSV Interposers and Interconnects for the 28nm Technology FPGA,” Proc. of IEEE Electronic Components and Technology Conf., pp. 285–290, 2011.
    [3] S. L. Wright, et al, "Micro-interconnection Reliability: Thermal, Electrical and Mechanical Stress", Proc. Electronic Components and Technology Conf., pp. 1278-1286, May 2012.
    [4] Y. J. Huang, J.-F. Li, J.-J. Chen, D.-M. Kwai, Y.-F. Chou, and C.-W. Wu, “A Built-In Self-Test Scheme for the Post-Bond Test of TSVs in 3D ICs,” Proc. of IEEE VLSI Test Symp, pp. 20-25, 2011.
    [5] F. Ye and K. Chakrabarty, “TSV Open Defects in 3D Integrated Circuits: Characterization, Test, and Optimal Spare Allocation”, Proc. of Design Automation Conf., pp. 10240-1030, June 2012.
    [6] Y.-H. Lin, S.-Y. Huang, K.-H. Tsai, W.-T. Cheng, S. Sunter, Y.-F. Chou, and D.-M. Kwai, “Small Delay Testing for TSVs in 3D ICs,” IEEE Proc. of Design Automation Conf., June 2012.
    [7] S.-Y. Huang, J.-Y. Lee, K.-H. (Hans) Tsai, and W.-T. Cheng, "Pulse-Vanishing Test for Interposers Wires in 2.5-D IC", IEEE Trans. on Computer-Aided Design of Electronic Circuits (TCAD), Vol. 33, No. 8, pp. 1258-1268, Aug. 2014.
    [8] A. Muhtaroglu, G. Taylor, and T. Rahal-Arabi, “On-Die Droop Detector for Analog Sensing of Power Supply Noise,” IEEE J. of Solid-State Circuits, vol. 39, no. 4, pp. 651-660, April. 2004.
    [9] R. Petersen, P. Pant, P. Lopez, A. Barton, J. Ignowski, and D. Josephson, “Voltage Transient Detection and Induction for Debug and Test,” Proc. of IEEE Int’l Test Conf., pp. 1-10, Nov. 2009.
    [10] U. Kang, H. Chung, S. Heo, D. Park, H. Lee, J. Kim, S. Ahn, S. Cha, J. Ahn, D. Kwon, et al., “8 GB 3-D DDR3DRAM using Through-Silicon-Via Technology,” IEEE Journal of Solid-State Circuits, Vol. 45, No. 1, pp. 111–119, 2010.
    [11] Z. Abuhamdeh, P. Pears, J. Remmers, A. L. Crouch, and B. Hannagan, “Characterize Predicted vs. Actual IR Drop in a Chip Using Scan Clocks”, IEEE Proc. of Int’l Test Conference (ITC), PP. 1-8, Oct. 2006.
    [12] Z. Abuhamdeh, V. D'Alassandro, R. Pico, D. Montrone, A. Crouch, and A. Tracy, “Separating Temperature Effects from Ring-Oscillator Readings to Measure True IR-Drop On a Chip”, IEEE Proc. of Int’l Test Conference (ITC), pp. 1-10, Oct. 2007.
    [13] Y. Miyake, Y. Sato, S. Kajihara, and Y. Miura, “Temperature and Voltage Estimation Using Ring-Oscillator-Based Monitor for Field Test,” Proc. Of Asian Test Symp., pp. 156 - 161, Nov. 2014.
    [14] A. Sehgal, Peilin Song, and Keith A. Jenkins, “On-Chip Real-Time Power Supply Noise Detector,” Proc. of IEEE European Solid-State Circuits Conf., pp. 380-383, Sept. 2006.
    [15] C.-H. Hsu, S.-Y. Huang, D.-M. Kwai, and Y.-F. Chou, "Worst-Case IR-Drop Monitoring with 1GHz Sampling Rate," Proc. of VLSI Design, Automation, and Test (VLSI-DAT), (April 2013).
    [16] C.-W. Tzeng, S.-Y. Huang, P.-Y. Chao, and R.-T. Ding, "Parameterized All-Digital PLL Architecture and Its Compiler to Support Easy Process Migration," IEEE Trans. on VLSI Systems (TVLSI), Vol. 22, No. 3, pp. 621-630, March 2014.
    [17] Y. Ogasahara, M. Hashimoto,and T. Onoye, “All-Digital Ring-Oscillator-Based Macro for Sensing Dynamic Supply Noise Waveform,” IEEE J.Solid-State Circuits, vol.44, no.6, pp. 1745-1755, Jun. 2009.
    [18] S.-W. Chen, M.-H. Chang, W.-C. Hsieh, and Wei Hwang, “Fully On-Chip Temperature, Process, and Voltage Sensors,” Proc. of IEEE Int’l Symp. on Circuits and Systems, pp. 897-900, Jun. 2010.
    [19] Dietel, S., Hoppner, S., Brauninger, T., Fiedler, U., Eisenreich, H., Ellguth, G., Hanzsche, S., Henker, S., Schüffny, R., “A compact on-chip IR-drop measurement system in 28 nm CMOS technology,” Circuits and Systems (ISCAS), 2014 IEEE International Symposium, pp. 1219-1222, Jun. 2014.
    [20] “CIC Reference Flow for Cell-based IC Design”, Chip Implementation Center, CIC, Taiwan, Document no. CIC-DSD-RD-08-01, 2008.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE