簡易檢索 / 詳目顯示

研究生: 蔡朝仁
Chao-Jen Tsai
論文名稱: 微直接甲醇燃料電池陽極微流道內CO2與甲醇水溶液之雙相流熱晶格波茲曼模擬
指導教授: 洪哲文
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 54
中文關鍵詞: 微直接甲醇燃料電池熱晶格波茲曼法雙相流馬里哥尼效應熱毛細遷移
外文關鍵詞: mDMFC, TLBM, two-phase flow, Marangoni effect, thermocapillary migration
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 討微型直接甲醇燃料電池(micro direct methanol fuel cell, uDMFC)陽極微流道內CO2氣泡之移除情形。在介觀(mesoscopic)尺度下,使用熱晶格波茲曼法(Thermal Lattice Boltzmann Method, LBM)用於模擬液氣雙相流(甲醇水溶液/CO2氣泡)的流動現象及排除方法。

    以水平放置的微流道,觀察其流動情形與排除速度,其中考慮表面張力(surface tension)、液固介面力(fluid-solid interaction force)與浮力(buoyancy force),並有考慮溫度影響。從不同幾何形狀,以及流道管徑、親疏水性表面性質、幾何形狀與溫度變化等等問題探討,並針對熱毛細效應(Marangoni effect)研究其效果。藉此了解並排除氣泡阻塞在微流道內的情況發生。

    直管微流道內,以較親水表面氣泡移動速度最快;而較疏水、漸親水與漸疏水表面其氣泡移動速度均較慢。利用熱毛細效應時,則漸高溫之流場氣泡移動速度會變快;而漸低溫之流場則會變慢。當入口出口溫差越小時,則會因熱毛細效應減弱使氣泡往高溫區移動的驅動力變小,氣泡移動速度變慢。利用此效應使阻塞在孔洞的氣泡順利通過,則以前段漸高溫流場為最佳,熱毛細效應效果最好,入口流速所需最低即可順利通過孔洞。

    漸縮式、漸擴式與直管微流道之入口質量流率均相同,且單位時間內流量體積亦相等。在高溫流場內,漸擴式的氣泡移動速度較快。當採漸高溫流場時,其氣泡移動速度提升最多且最快,即利用熱毛細效應使氣泡往高溫區移動的效果最佳,其對於氣泡移除最為有利。

    總結此研究,較親水表面或漸高溫流場,皆較有利於氣泡移除,而漸擴式親水性表面微流道之漸高溫流場為最佳。故此類型之微流道,將最有利CO2氣泡的移除,以提高微型直接甲醇燃料電池之整體性能。


    摘要 誌謝 目錄 圖目錄 表目錄 符號說明 縮寫說明 第一章 緒論 1.1 前言 1.2 直接甲醇燃料電池 1.2.1 直接甲醇燃料電池簡介 1.2.2 微型直接甲醇燃料電池 1.3 研究目的與方法 1.4 文獻回顧 1.4.1 CO2氣泡流動相關研究 1.4.2 熱毛細遷移現象相關研究 1.4.3 晶格波茲曼法 1.4.4 晶格波茲曼法於雙相流 1.4.5 熱晶格波茲曼法 第二章 理論分析 2.1 波茲曼方程式與晶格波茲曼方程式 2.2 標準D2Q9模型 2.3 流場之熱晶格波茲曼法 2.4 流場的邊界條件 2.4.1 無滑移邊界條件 2.4.2 速度邊界條件 2.5 溫度場之熱晶格波茲曼法 2.6 溫度場的邊界條件 2.6.1 固定溫度邊界條件 2.6.2 入口與出口邊界條件 2.7 TLBM的演算步驟流程 第三章 模擬結果 3.1 CO2氣泡行為 3.2 熱毛細效應(Thermocapillary Effect) 3.3 參數設定 3.3.1 不同管徑之直管微流道 3.3.2 不同液固介面強度之直管微流道 3.3.3 不同溫度分布之直管微流道 3.3.4 孔洞微流道 3.3.5 漸縮與漸擴微流道 3.4 結果與討論 3.4.1 流道管徑之影響 3.4.2 液固介面強度之影響 3.4.3 溫度效應之影響 3.4.4 孔洞微流道之影響 3.4.5 漸縮與漸擴微流道之影響 第四章 結論與未來建議 4.1 結論 4.2 未來建議 參考文獻 圖目錄 圖1.1 世界原油蘊藏量估計[1] 圖1.2 DMFC之基本工作原理 圖2.1 D2Q9晶格(兩個空間維度,九個晶格速 圖2.2 流場邊界點的分布函數(實線─表示已知函數,虛線---表示 未知函數) 圖2.3 壁面邊界點的分布函數(實線─表示已知函數,虛線---表示 未知函數):(a)上壁 (b)下壁 圖2.4 入口邊界點的分布函數(白色部份代表流場區域): (a)左上角 (b)中間 (c)左下角 圖3.1 氣泡於微流道內接觸角示意圖(θ為接觸角) 圖3.2 晶格示意圖 圖3.3 氣泡於微流道內之示意圖 圖3.4 Marangoni效應[36] 圖3.5 模擬系統示意圖:直管微流道(U為入口流速,L為微流道 總長,W為流道尺寸) 圖3.6 溫度與表面張力/液氣介面強度關係圖 圖3.7 模擬系統示意圖:孔洞微流道 圖3.8 模擬系統示意圖( 為質量流率,L為微流道總長,Win 為入口尺寸,Wout為出口尺寸) :(a)漸縮微流道 (b)漸擴微流道 圖3.9 流道管徑與氣泡位置關係圖:(a) time = 3.75 ms (b) time = 38.75 ms 圖3.10 微流道內的氣泡移動情形 圖3.11 不同液固介面強度之氣泡 圖3.12 液固介面強度與氣泡接觸角關係圖 圖3.13 氣泡接觸角與移動速度關係圖 圖3.14 表面性質與氣泡移動速度 圖3.15 漸親水性表面微流道內的氣泡移動情形 圖3.16 漸疏水性表面微流道內的氣泡移動情形 圖3.17 溫度與氣泡移動速度關係圖 圖3.18 不同流場溫度之氣泡大小(time = 18.75 ms) 圖3.19溫度與氣泡大小關係圖 圖3.20 漸高溫流場內的密度場與溫度場之氣泡移動情形 圖3.21 漸低溫流場內的密度場廠與溫度場之氣泡移動情形 圖3.22 流場溫度分布形式與氣泡移動速度 圖3.23 入口流速與氣泡移動速度關係圖 圖3.24 溫差與氣泡移動速度關係圖 圖3.25 等溫流場的氣泡阻塞情形 圖3.26 漸高溫流場的氣泡阻塞情形 圖3.27 前段漸高溫流場的氣泡阻塞情形 圖3.28 不同幾何形狀與溫度分布之氣泡移動速度 圖3.29 漸縮式微流道的氣泡移動情形: (a)高溫流場 (b)漸高溫流場 圖3.30 漸擴式微流道的氣泡移動情形: (a)高溫流場 (b)漸高溫流場 表目錄 表3-1 晶格定義 表3-2 不同管徑之直管微流道 表3-3 不同液固介面強度之直管微流道 表3-4 不同溫度形式之直管微流道 表3-5 甲醇水溶液的表面張力 表3-6 孔洞微流道 表3-7 漸縮與漸擴微流道 表3-8 流場溫度分布形式與阻塞孔洞情形 表3-9 不同溫度分布形式與幾何形狀之氣泡移動速度 表4-1 各種效應之影響

    [1]http://www.bp.com/statisticalreview
    [2]Argyropoulos, P., Scott, K., and Taama, W. M., “Gas evolution and power performance in direct methanol fuel cells,” Journal of Applied Electrochemistry, Vol. 29, No. 6, pp. 661-669, 1999.
    [3]Lu, G. Q., and Wang, C. Y., “Electrochemical and flow characterization of a direct methanol fuel cell,” Journal of Power Sources, Vol. 134, No. 1, pp. 33-40, 2004.
    [4]Yang, H., Zhao, T. S., and Te, Q., “In situ visualization study of CO2 gas bubble behavior in DMFC anode flow fields,” Journal of Power Sources, Vol. 139, No. 1-2, pp. 79-90, 2005.
    [5]Yang, H., and Zhao, T. S., “Effect of anode flow field design on the performance of liquid feed direct methanol fuel cells,” Electrochimica Acta, Vol. 50, No. 16-17, pp. 3243-3252, 2005.
    [6]Wong, C. W., Zhao, T. S., Ye, Q., and Liu, J. G., “Transient Capillary Blocking in the Flow Field of a Micro-DMFC and Its Effect on Cell Performance,” Journal of The Electrochemical Society, Vol. 152, No. 8, pp. A1600-A1605, 2005.
    [7]Litterst, C., Eccarius, S., Hebling, C., Zengerle, R., and Koltay, P., “Increasing μDMFC efficiency by passive CO2 bubble removal and discontinuous operation,” Journal of Micromechanics and Microengineering, Vol. 16, No. 9, pp. S248-S253, 2006.
    [8]Young, N. O., Goldstein, J. S., and Block, M. J., “The motion of bubbles in a vertical temperature gradient,” Journal of Fluid Mechanics, Vol. 6, No. 3, pp. 350-356, 1959.
    [9]Jun, K. T., and Kim, C. J. “Microscale pumping with traversing bubbles in microchannels,” in Proc. IEEE Solid-State Sensor Actuator Workshop, Hilton Head Island, SC, pp. 144–147, 1996.
    [10]Bratukhin, Y. K., Kostarev, K. G., Viviani, A., and Zuev, A. L., “Experimental study of Marangoni bubble migration in normal gravity,” Experiments in Fluids, Vol. 38, No. 5, pp. 594-605, 2005.
    [11]Frisch, U., Hasslacher, B., and Pomeau, Y., “Lattice-gas automata for the Navier-Stokes equation,” Physical Review Letters, Vol.56, No. 14, pp. 1505-1508, 1986.
    [12]Frisch, U., D'Humières, D., Hasslacher, B., Lallemand, P., Pomeau, Y., and Rivet, J. R., “Lattice gas hydrodynamics in two and three dimensions,” Complex Systems ,Vol. 1, No. 4, pp. 649-707, 1987.
    [13]McNamara, G. R., and Zanetti, G., “Use of the boltzmann equation to simulate lattice-gas automata,” Physical Review Letters, Vol. 61, No. 20, pp. 2332-2335, 1988.
    [14]Higuera, F., and Jimènez, J., “Boltzmann approach to lattice gas simulations,” Europhysics Letters, Vol. 9, No. 7, pp. 663-668, 1989.
    [15]Koelman, J. M. V. A., “A simple lattice Boltzmann scheme for Navier Stokes fluid flow,” Europhysics Letters, Vol. 16, No. 57, pp. 603-607, 1991.
    [16]Qian, Y. H., D'Humières, D., and Lallemand, P., “Lattice BGK models for Navier-Stokes equation,” Europhysics Letters, Vol. 17, No. 6, pp. 479-484, 1992.
    [17]Gunstensen, A. K., Rothman, D. H., Zaleski, S., and Zanetti, G., “Lattice Boltzmann model of immiscible fluids,” Physical Review A, Vol. 43, No. 8, pp. 4320-4327, 1991.
    [18]Ginzburg I., and Steiner K., “Lattice Boltzmann model for free-surface flow and its application to filling process in casting,” Journal of Computational Physics, Vol. 185, No. 1, pp.61-99, 2003.
    [19]Shan, X. and Chen, H., “Lattice Boltzmann model for simulating flows with multiple phases and components,” Physical Review A, Vol. 47, No. 3, pp. 1815-1820, 1993.
    [20]Shan, X. and Chen, H., “Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation,” Physical Review E, Vol. 49, No. 4, pp. 2941-2948, 1994.
    [21]Yang, Z. L., Palm, B., and Sehgal, B. R.,“Numerical simulation of bubbly two-phase flow in a narrow channel,” International Journal of Heat and Mass Transfer, Vol. 45, No. 3, pp. 631-639, 2002.
    [22]Sukop, M. C., and Or, D., “Invasion percolation of single component, multiphase fluids with Lattice Boltzmann models,” Physica B, Vol. 338, No.1-4, pp.298-303, 2003.
    [23]Swift, M. R., Osborn, W. R., Yeomans, J. M., “Lattice Boltzmann simulation of nonideal fluids,” Physical Review Letters, Vol.75, No. 5, pp. 830-833, 1995.
    [24]Frank, X., and Li, H. Z., “Complex flow around a bubble rising in a non-Newtonian fluid,” Physical Review E, Vol. 71, No. 3, pp. 036309, 2005.
    [25]Luo, L. S., “Unified theory of lattice Boltzmann models for nonideal gases,” Physical Review Letters, Vol.81 , No. 8, pp. 1618-1621, 1998.
    [26]Luo, L. S., and Girimaji, S. S., “Lattice Boltzmann model for binary mixtures,” Physical Review E, Vol. 66, No. 3, pp. 035301, 2002.
    [27]Inamuro, T., Ogata, T., and Ogino, F., “Numerical simulation of bubble flows by the lattice Boltzmann method,” Future Generation Computer Systems, Vol. 20, No. 6, pp. 959-964, 2004.
    [28]Inamuro, T., Ogata, T., Tajima, S., and Konishi, N., “A lattice Boltzmann method for incompressible two-phase flows with large density differences,” Journal of Computational Physics, Vol. 198, No. 2, pp. 628-644, 2004.
    [29]Alexander, F. J., Chen, S., and Sterling, J. D., “Lattice Boltzmann thermohydrodynamics,” Physical Review E, Vol. 47, No. 4, pp. R2249-R2252, 1993.
    [30]Shan, X., “Simulation of Rayleigh-Bénard convection using lattice Boltzmann method,” Physical Review E, Vol. 55, No. 3, pp. R2780-R2788, 1997.
    [31]Yuan, P., and Schaefer, L., “A thermal lattice Boltzmann two-phase flow model and its application to heat transfer problems—Part 1. Theoretical foundation,” Journal of Fluids Engineering, Vol. 128, No. 1, pp. 142-150, 2006.
    [32]Yuan, P., and Schaefer, L., “A thermal lattice Boltzmann two-phase flow model and its application to heat transfer problems—Part 2. Integration and validation,” Journal of Fluids Engineering, Vol. 128, No. 1, pp. 151-156, 2006.
    [33]Fei, K., Cheng, C. H., and Hong, C. W., “Lattice Boltzmann simulations of CO2 bubble dynamics at the anode of a □DMFC,” ASME Journal of Fuel Cell Science and Technology, Vol. 3, No. 2, pp. 180-187, 2006.
    [34]Zou, Q., and He, X., “On pressure and velocity boundary conditions for the lattice Boltzmann BGK model,” Physics of Fluids, Vol. 9, No. 6, pp. 1591-1598, 1997.
    [35]Shi, Y., Zhao, T. S., and Guo, Z. L., “Thermal lattice Bhatnagar-Gross-Krook model for flows with viscous heat dissipation in the incompressible limit,” Physical Review E, Vol. 70, No. 62, pp. 066310, 2004.
    [36]Inamuro, T., Yoshino, M., Inoue, H., Mizuno, R., and Ogino, F., “A lattice Boltzmann method for a binary miscible fluid mixture and its application to a heat-transfer problem,” Journal of Computational Physics, Vol. 179, No. 1, pp. 201-215, 2002.
    [37]Takahashi, K., Yoshino, K., Hatano, S., and Nagayama, K., “Novel applications of thermally controlled microbubble driving system,” Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS), pp. 286-289, 2001.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE