研究生: |
謝恩娜 Barbisan, Ana Maria |
---|---|
論文名稱: |
光固化、PVP 摻雜、可生物降解聚合物複合材料的電導率與機械性質表徵 Characterization of Conductivity and Mechanical Properties of Photocurable, PVP-doped, Biodegradable Polymer Composites |
指導教授: |
王潔
Wang, Jane |
口試委員: |
黃振煌
Huang, Jen-Huang 陳俊太 Chen, Jiun-Tai |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 英文 |
論文頁數: | 53 |
中文關鍵詞: | 導電聚合物 、聚乙烯吡咯烷酮 、導電性 、光固化聚合物 |
外文關鍵詞: | Conductive polymers, polyvinylpyrrolidone, electrical conductivity, photocurable polymers |
相關次數: | 點閱:29 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
導電聚合物複合材料(CPCs)具有可與無機材料相媲美的獨特而卓越的性能。它們的高環境穩定性和可調節的機械性能使它們特別令人著迷。雖然大多數聚合物本身並不導電,但少數聚合物表現出優異的電性能,例如聚(3,4-乙撐二氧噻吩)(PEDOT)、聚苯胺(PANI)和聚乙烯吡咯烷酮(PVP) 。這些 CPCs 可以合併到絕緣體或低導電聚合物以增強其導電性,然而,它們中的大多數都具有生物降解性。 因此,在本研究中,選擇 PVP 作為添加劑導電聚合物,並與三種不同的可生物降解、光固化聚合物共混。
聚合物聚癸二酸甘油酯(PGSA)、聚癸二酸甘油酯甲基丙烯酸酯(PGSMA)和聚(乙二醇)二丙烯酸酯(PEGDA)由於其可調節的機械性能、生物相容性在生物醫學領域顯示出巨大的前景。 PVP 摻雜的添加進一步增強了它們的導電潛力,使它們對生物醫學應用更具吸引力。評估了本徵聚合物複合材料和摻雜聚合物複合材料的溶脹比、電導率、介電常數和機械性能。由於 PVP 促進液體吸收,複合材料在含有 PVP 摻雜樣品的鹽類介質中表現出較高的電導率值。將薄膜浸入鹽溶液中會引入額外的離子,以促進聚合物鍊網絡內的電子傳輸。此外,PGSA-PVP 和 PGSMA-PVP 在鹽類介質中表現出高電導率,並具有值得稱讚的機械性能。
Conductive polymer composites (CPCs) possess unique and exceptional properties that can rival inorganic materials. Their high environmental stability and adjustable mechanical properties make them particularly intriguing. While most polymers are not inherently conductive, a select few exhibit excellent electrical properties, such as poly(3,4-ethylenedioxythiophene) (PEDOT), polyaniline (PANI), and polyvinylpyrrolidone (PVP). These CPCs can be incorporated into insulators or low-conductive polymers to enhance their conductivity—however, most of them present resistance to biodegradability. Therefore, in this study, PVP was chosen as the additive conductive polymer and blended with three different biodegradable, photocurable polymers.
The polymers poly(glycerol-co-sebacate) acrylate (PGSA), poly(glycerol sebacate) methacrylate (PGSMA), and poly(ethylene glycol) diacrylate (PEGDA) show great promise in the biomedical field due to their tunable mechanical properties, biocompatibility, and photo-curing characteristics. The addition of PVP doping further enhances their potential for conductivity, making them even more attractive for biomedical applications. The intrinsic and doped polymer composites were evaluated for their swelling ratio, electrical conductivity, dielectric constant, and mechanical properties. The electrical conductivity showed higher values for composites in saline-type media with PVP-doped samples due to liquid absorption facilitated by PVP. Immersing the films in saline solutions introduced extra ions to promote electron transport within the polymer chain network. Moreover, PGSA-PVP and PGSMA-PVP demonstrate high conductivity in saline-type media and possess commendable mechanical properties.
1. Nasajpour-Esfahani, N. et al. A critical review on intrinsic conducting polymers and their applications. Journal of Industrial and Engineering Chemistry 125, 14–37 (2023).
2. Al-Azzawi, A. G. S. et al. A Mini Review on the Development of Conjugated Polymers: Steps towards the Commercialization of Organic Solar Cells. Polymers (Basel) 15, 164 (2022).
3. Hummel, R. E. Electrical Conduction in Metals and Alloys. in Electronic Properties of Materials 79–114 (Springer New York, New York, NY, 2011). doi:10.1007/978-1-4419-8164-6_7.
4. Böer, K. W. & Pohl, U. W. Bands and Bandgaps in Solids. in Semiconductor Physics 257–317 (Springer International Publishing, Cham, 2023). doi:10.1007/978-3-031-18286-0_8.
5. Gutzler, R. Band-structure engineering in conjugated 2D polymers. Physical Chemistry Chemical Physics 18, 29092–29100 (2016).
6. Le, T.-H., Kim, Y. & Yoon, H. Electrical and Electrochemical Properties of Conducting Polymers. Polymers (Basel) 9, 150 (2017).
7. Su, W. P., Schrieffer, J. R. & Heeger, A. J. Solitons in Polyacetylene. Phys Rev Lett 42, 1698 (1979).
8. The concept of ‘doping’ of conducting polymers: the role of reduction potentials. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 314, 3–15 (1985).
9. K, N. & Rout, C. S. Conducting polymers: a comprehensive review on recent advances in synthesis, properties and applications. RSC Adv 11, 5659–5697 (2021).
10. Kaur, G., Adhikari, R., Cass, P., Bown, M. & Gunatillake, P. Electrically conductive polymers and composites for biomedical applications. RSC Adv 5, 37553–37567 (2015).
11. Broda, C. R., Lee, J. Y., Sirivisoot, S., Schmidt, C. E. & Harrison, B. S. A chemically polymerized electrically conducting composite of polypyrrole nanoparticles and polyurethane for tissue engineering. J Biomed Mater Res A 98A, 509–516 (2011).
12. Rajeswari, N., Selvasekarapandian, S., Sanjeeviraja, C., Kawamura, J. & Asath Bahadur, S. A study on polymer blend electrolyte based on PVA/PVP with proton salt. Polymer Bulletin 71, 1061–1080 (2014).
13. Nishi, T., Wang, T. T. & Kwei, T. K. Thermally Induced Phase Separation Behavior of Compatible Polymer Mixtures. Macromolecules 8, 227–234 (1975).
14. Shahenoor Basha, S. K., Sunita Sundari, G., Vijay Kumar, K. & Rao, M. C. Optical and dielectric properties of PVP based composite polymer electrolyte films. Polymer Science, Series A 59, 554–565 (2017).
15. Ravi, M. et al. Studies on electrical and dielectric properties of PVP:KBrO4 complexed polymer electrolyte films. Mater Chem Phys 130, 442–448 (2011).
16. Kumar, K. K. et al. Investigations on PEO/PVP/NaBr complexed polymer blend electrolytes for electrochemical cell applications. J Memb Sci 454, 200–211 (2014).
17. Sreekanth, K., Siddaiah, T., Gopal, N. O., Madhava Kumar, Y. & Ramu, C. Thermal, structural, optical and electrical conductivity studies of pure and Fe3+ ions doped PVP films for semoconducting polymer devices. Materials Research Innovations 25, 95–103 (2021).
18. Ravi, M., Pavani, Y., Bhavani, S., Sharma, A. K. & Narasimha Rao, V. V. R. Investigations on Structural and Electrical Properties of KClO 4 Complexed PVP Polymer Electrolyte Films. Int J Polym Mater 61, 309–322 (2012).
19. Sreekanth, K. et al. Thermal, Structural, Optical and Electrical Conductivity studies of pure and Mn2+ doped PVP films. S Afr J Chem Eng 36, 8–16 (2021).
20. Kouser, S. et al. Modified halloysite nanotubes with Chitosan incorporated PVA/PVP bionanocomposite films: Thermal, mechanical properties and biocompatibility for tissue engineering. Colloids Surf A Physicochem Eng Asp 634, 127941 (2022).
21. Kiran Kumar, K. et al. Investigations on the effect of complexation of NaF salt with polymer blend (PEO/PVP) electrolytes on ionic conductivity and optical energy band gaps. Physica B Condens Matter 406, 1706–1712 (2011).
22. Teodorescu, M. & Bercea, M. Poly(vinylpyrrolidone) – A Versatile Polymer for Biomedical and Beyond Medical Applications. Polym Plast Technol Eng 54, 923–943 (2015).
23. Alemán, C., Torras, J. & Casanovas, J. Influence of polarity of the medium in the saturation of the electronic properties for π-conjugated oligothiophenes. Chem Phys Lett 511, 283–287 (2011).
24. Moulik, S. P. & Khan, D. P. Conductometric evaluation of interactions of electrolytes with D-glucitol, D-glucose, glycerol, D-mannitol, and sucrose. Carbohydr Res 36, 147–157 (1974).
25. Majhi, P. R., Moulik, S. P., Burke, S. E., Rodgers, M. & Palepu, R. Physicochemical Investigations on the Interaction of Surfactants and Salts with Polyvinylpyrrolidone in Aqueous Medium. J Colloid Interface Sci 235, 227–234 (2001).
26. Heller, A. & Feldman, B. Electrochemical glucose sensors and their applications in diabetes management. Chem Rev 108, 2482–2505 (2008).
27. Ojijo, V. & Sinha Ray, S. Processing strategies in bionanocomposites. Prog Polym Sci 38, 1543–1589 (2013).
28. Maurya, A. K., de Souza, F. M., Dawsey, T. & Gupta, R. K. Biodegradable polymers and composites: Recent development and challenges. Polym Compos 45, 2896–2918 (2024).
29. Mangaraj, S., Yadav, A., Bal, L. M., Dash, S. K. & Mahanti, N. K. Application of Biodegradable Polymers in Food Packaging Industry: A Comprehensive Review. Journal of Packaging Technology and Research 2018 3:1 3, 77–96 (2018).
30. Tian, H., Tang, Z., Zhuang, X., Chen, X. & Jing, X. Biodegradable synthetic polymers: Preparation, functionalization and biomedical application. Prog Polym Sci 37, 237–280 (2012).
31. Imre, B. & Pukánszky, B. Compatibilization in bio-based and biodegradable polymer blends. Eur Polym J 49, 1215–1233 (2013).
32. Mohanty, A. K., Misra, M. & Drzal, L. T. Sustainable Bio-Composites from renewable resources: Opportunities and challenges in the green materials world. J Polym Environ 10, 19–26 (2002).
33. BIOPLASTICS MARKET DEVELOPMENT UPDATE 2023 – European Bioplastics e.V. https://www.european-bioplastics.org/bioplastics-market-development-update-2023-2/.
34. Biodegradable Plastics Market | Industry Report, Forecast 2031. https://www.transparencymarketresearch.com/biodegradable-plastics-market.html.
35. Hamad, K., Kaseem, M., Yang, H. W., Deri, F. & Ko, Y. G. Properties and medical applications of polylactic acid: A review. Express Polym Lett 9, 435–455 (2015).
36. Wang, Y., Ameer, G. A., Sheppard, B. J. & Langer, R. A tough biodegradable elastomer. Nature Biotechnology 2002 20:6 20, 602–606 (2002).
37. Wang, Y., Kim, Y. M. & Langer, R. In vivo degradation characteristics of poly(glycerol sebacate). J Biomed Mater Res A 66A, 192–197 (2003).
38. Chen, Q. Z. et al. Characterisation of a soft elastomer poly(glycerol sebacate) designed to match the mechanical properties of myocardial tissue. Biomaterials 29, 47–57 (2008).
39. Rosalia, M. et al. Polyglycerol Sebacate Elastomer: A Critical Overview of Synthetic Methods and Characterisation Techniques. Polymers 2024, Vol. 16, Page 1405 16, 1405 (2024).
40. Redenti, S. et al. Engineering retinal progenitor cell and scrollable poly(glycerol-sebacate) composites for expansion and subretinal transplantation. Biomaterials 30, 3405–3414 (2009).
41. Nijst, C. L. E. et al. Synthesis and Characterization of Photocurable Elastomers from Poly(glycerol- co -sebacate). Biomacromolecules 8, 3067–3073 (2007).
42. Pashneh-Tala, S. et al. Synthesis, Characterization and 3D Micro-Structuring via 2-Photon Polymerization of Poly(glycerol sebacate)-Methacrylate–An Elastomeric Degradable Polymer. Front Phys 6, (2018).
43. Becerril-Rodriguez, I. C. & Claeyssens, F. Low methacrylated poly(glycerol sebacate) for soft tissue engineering. Polym Chem 13, 3513–3528 (2022).
44. Singh, D., Lindsay, S., Gurbaxani, S., Crawford, A. & Claeyssens, F. Elastomeric Porous Poly(glycerol sebacate) Methacrylate (PGSm) Microspheres as 3D Scaffolds for Chondrocyte Culture and Cartilage Tissue Engineering. Int J Mol Sci 24, 10445 (2023).
45. Gao, Y. et al. PEGDA/PVP Microneedles with Tailorable Matrix Constitutions for Controllable Transdermal Drug Delivery. Macromol Mater Eng 303, (2018).
46. Engberg, K. & Frank, C. W. Protein diffusion in photopolymerized poly(ethylene glycol) hydrogel networks. Biomedical Materials 6, 055006 (2011).
47. Pashankar, D. S., Uc, A. & Bishop, W. P. Polyethylene glycol 3350 without electrolytes: a new safe, effective, and palatable bowel preparation for colonoscopy in children. J Pediatr 144, 358–362 (2004).
48. Tessmar, J. K. & Göpferich, A. M. Customized PEG-Derived Copolymers for Tissue-Engineering Applications. Macromol Biosci 7, 23–39 (2007).
49. Nemir, S., Hayenga, H. N. & West, J. L. PEGDA hydrogels with patterned elasticity: Novel tools for the study of cell response to substrate rigidity. Biotechnol Bioeng 105, 636–644 (2010).
50. Veronese, F. M. & Mero, A. The impact of PEGylation on biological therapies. BioDrugs 22, 315–329 (2008).
51. Hakim Khalili, M. et al. Additive Manufacturing and Physicomechanical Characteristics of PEGDA Hydrogels: Recent Advances and Perspective for Tissue Engineering. Polymers (Basel) 15, 2341 (2023).
52. Marine system_Coral Sea Salt_Products | ISTA Taiwan _ Tzong-Yang Aquarium. https://www.tzong-yang.com.tw/en/goods.php?id=1470.
53. DMEM, high glucose, pyruvate. https://www.thermofisher.com/order/catalog/product/11995065.
54. 41965 - DMEM, high glucose | Thermo Fisher Scientific - TW. https://www.thermofisher.com/tw/zt/home/technical-resources/media-formulation.170.html.
55. Nguyen, K. T. & West, J. L. Photopolymerizable hydrogels for tissue engineering applications. Biomaterials 23, 4307–4314 (2002).
56. Huang, W. & Wang, J. Development of 3D‐Printed, Biodegradable, Conductive PGSA Composites for Nerve Tissue Regeneration. Macromol Biosci 23, (2023).
57. Model 2325 Bipotentiostat Instruction manual. https://www.als-japan.com/dlc/manual/2325_manual/2325_manual_en.pdf.
58. Son, K. & Lee, J. Synthesis and Characterization of Poly(Ethylene Glycol) Based Thermo-Responsive Hydrogels for Cell Sheet Engineering. Materials 9, 854 (2016).
59. Gao, F., Wang, Q. & Yang, X. pH-responsive nanoparticles based on optimized synthetic amphiphilic poly(β-amino esters) for doxorubicin delivery. Colloid Polym Sci 298, 303–312 (2020).
60. Jang, H. et al. Thermally Crosslinked Biocompatible Hydrophilic Polyvinylpyrrolidone Coatings on Polypropylene with Enhanced Mechanical and Adhesion Properties. Macromol Res 26, 151–156 (2018).
61. Bazzini, P. & Wermuth, C. G. Substituent Groups. in The Practice of Medicinal Chemistry 319–357 (Elsevier, 2008). doi:10.1016/B978-0-12-417205-0.00013-4.
62. Basha, S. K. S., Sundari, G. S., Kumar, K. V. & Rao, M. C. Preparation and dielectric properties of PVP-based polymer electrolyte films for solid-state battery application. Polymer Bulletin 75, 925–945 (2018).
63. Singh, P. & Saroj, A. L. Effect of ionic liquid on structural, thermal and electrical transport properties of PVA-PVP based polymer blend electrolyte membrane. Phys Scr 96, 115701 (2021).
64. Industrial Reverse Osmosis & Deionization Water Quality Conductivity Conversions | Industrial Water Solutions. https://industrialh2osolutions.com/conversions-and-guides-conversion-table/.
65. Pukánszky, B. Influence of interface interaction on the ultimate tensile properties of polymer composites. Composites 21, 255–262 (1990).
66. Chattopadhyay, D. K., Panda, S. S. & Raju, K. V. S. N. Thermal and mechanical properties of epoxy acrylate/methacrylates UV cured coatings. Prog Org Coat 54, 10–19 (2005).
67. Salih, S. I., Jabur, A. R. & Mohammed, T. The Effect of PVP Addition on the Mechanical Properties of Ternary Polymer Blends. IOP Conf Ser Mater Sci Eng 433, 012071 (2018).
68. Wang, Y. et al. A highly stretchable, transparent, and conductive polymer. Sci Adv 3, (2017).
69. Manville, A. M., Levitt, B. B. & Lai, H. C. Health and environmental effects to wildlife from radio telemetry and tracking devices—state of the science and best management practices. Front Vet Sci 11, (2024).
70. Maharaj, A. & Leyland, R. THE DIELECTRIC CONSTANT AS A MEANS OF ASSESSING THE PROPERTIES OF ROAD CONSTRUCTION MATERIALS.
71. Dielectric measurement system Microwave Dielectrometer Simple Low cost Accurate. https://www.lihyuan.com.tw/attach/product__a_1__113.pdf.
72. Shahenoor Basha, S. K. et al. ELECTRICAL CONDUCTION BEHAVIOUR OF PVP BASED COMPOSITE POLYMER ELECTROLYTES. Rasayan J. Chem 10, 279–285.
73. Mtioui, O., Litaiem, H., Garcia-Granda, S., Ktari, L. & Dammak, M. Thermal behavior and dielectric and vibrational studies of Cs2(HAsO4)0.32(SO4)0.68·Te(OH)6. Ionics (Kiel) 21, 411–420 (2015).
74. Soares, B. G., Leyva, M. E., Barra, G. M. O. & Khastgir, D. Dielectric behavior of polyaniline synthesized by different techniques. Eur Polym J 42, 676–686 (2006).
75. Chérif, S. F., Chérif, A., Dridi, W. & Zid, M. F. Ac conductivity, electric modulus analysis, dielectric behavior and Bond Valence Sum analysis of Na3Nb4As3O19 compound. Arabian Journal of Chemistry 13, 5627–5638 (2020).
76. The use of the formalism of the complex electrical module in the monitoring of oncological diseases. doi:10.1088/1742-6596/2103/1/012047.
77. Rao, Z. et al. All-Polymer Based Stretchable Rubbery Electronics and Sensors. Adv Funct Mater 32, 2111232 (2022).