簡易檢索 / 詳目顯示

研究生: 余慶聰
Ching-Tsung Yu
論文名稱: 輻射敏感型光觸媒之開發與研究
The development of radio-sensitive photocatalyst
指導教授: 王竹方
Chu-Fang Wang
口試委員:
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 131
中文關鍵詞: 二氧化鈦氟化鋇氧化鈰輻射敏感型光觸媒
外文關鍵詞: TiO2, BaF2, CeO2, Radio-sensitive photocatalyst
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目的為輻射敏感型光觸媒(以下稱為輻射觸媒)之開發及其光催化特性之研究,結合TiO2光觸媒與鋇Ba、鈰Ce輻射敏感元素,開發出能利用加馬、貝他輻射能激發TiO2 潛能之輻射觸媒材料。研究中合成三類光觸媒材料:(1) BaF2/TiO2/陶瓷粉,(2) CeO2/TiO2/陶瓷粉及(3) TiO2/monazite。上述觸媒是利用四氯化鈦水解,硝酸鋇/氟化鈉反應先分別獲得含有鈦、鋇前驅物,再經由基材吸附及450℃燒結而成。另外嘗試在UV光照下,加入甲醇作為還原劑,使得TiO2 表面沉積CeO2。上述觸媒係經BET、SEM/EDS、XRD與ICP-AES分別用於觸媒之比表面積、表面形貌/粒徑、晶型及元素含量測定。鑑定結果顯示,基材表面含有4.6% TiO2 (10~20 nm, anatase, grain),3.8% BaF2 (200~500 nm, Frankdicksonite, cubic),及0.2% CeO2 (5 nm, grain) 微粒。
    在測試光觸媒性能實驗中,分別利用UV光及60Co 作為激發能源,結果顯示觸媒對於亞甲基藍(MB)、酚、有機樹脂皆有良好的分解效果。在1 Gy以下的照射劑量(約1 MBq60Co照射20 小時)下,可以將10 ppm MB完全分解,而1 克樹脂粒子全部分解成可溶性有機物。證明利用輻射觸媒在低劑量時,確實可以完全分解有機物。研究中嘗試利用輻射放光(Radioluminescence)、複合半導體間界面電位(Heterojunction, HJ) 等協同作用(Synergistic effect)之機制,來解釋輻射敏感物質鋇、鈰吸收輻射引發TiO2 光催化現象,及UV、60Co對於陶瓷粉等基材,於改質前後TiO2 表面遮蔽之探討。


    第一章 前言.............................................................................................1 1-1 研究緣起.....................................................................1 1-2 研究目的與內容..................................................................3 第二章 文獻回顧.....................................................................................6 2-1 光催化反應原理、限制及輻射催化研究......................................6 2-1-1 光觸媒反應原理.............................................................8 2-1-2 影響光觸媒反應速率的因素................................................12 2-1-3 UV光觸媒應用的限制..........................................................17 2-1-4國外與輻射相關的光觸媒研究............................................21 2-2 以輻射能引發TiO2之作用模式..................................................24 2-2-1輻射直接激發TiO2.............................................................24 2-2-2輻射敏感物質之輻射放光................................................27 2-2-3 複合半導體材料............................................................30 2-3 觸媒合成方法..........................................................................35 2-3-1 水相螯合方式...................................................................37 2-3-2 光催化合成.....................................................................39 第三章 實驗及方法......................................................................41 3-1 實驗藥品與儀器設備...........................................................41 3-2 觸媒製備方法...........................................................................43 3-2-1 BaF2/TiO2/陶瓷粉合成....................................................44 3-2-2 CeO2/TiO2/陶瓷粉合成.....................................................45 3-2-3 TiO2/monazite合成........................................................46 3-3觸媒基本性質鑑定........................................................................46 3-4 有機物催化分解實驗…………………………………………...48 3-4-1 BaF2/TiO2/陶瓷粉降解亞甲基藍.......................................49 3-4-2 BaF2/TiO2/陶瓷粉降解樹脂........................................50 3-4-3 CeO2/TiO2/陶瓷粉降解亞甲基藍.....................................50 3-4-4 TiO2/monazite降解亞甲基藍、酚...................................50 第四章 結果與討論.................................................................................52 4-1觸媒特性分析............................................................52 4-1-1 BaF2/TiO2/陶瓷粉複合材料........................................52 4-1-2 CeO2/TiO2/陶瓷粉複合材料..................................................57 4-1-3 TiO2/monazite基材....................................................61 4-2 觸媒催化分解性能測試..............................................69 4-2-1 BaF2/TiO2/陶瓷粉降解亞甲基藍...........................................70 4-2-2 BaF2/TiO2/陶瓷粉降解有機樹脂.....................................73 4-2-3 CeO2/TiO2/陶瓷粉降解亞甲基藍......................................77 4-2-4 TiO2/monazite降解亞甲基藍及酚.........................................80 4-3 反應機制探討.............................................................86 4-3-1 輻射放光(Radioluminescence, RL)..................................87 4-3-2 複合半導體間界面電位(Heterojunction, HJ).......................91 第五章 結論與建議................................................................................96 5-1 結論...............................................................................96 5-2 建議..........................................................................99 致謝.........................................................................................................101 參考文獻....................................................................................102 附件1 TiO2與BaF2合成於矽膠基材之XPS圖譜.............................109 附件2(研究期間發表期刊及會議論文) 附件 2.1 Synthesis and characterization of TiO2/BaF2/ceramic radio-sensitive photocatalyst(J Photo. Photo. A:Chem.期刊)110 附件 2.2 Decomposition of Organic Resin by Radio-sensitive Photocatalyst(J Photo. Photo. A:Chem. 期刊)………….......116 附件 2.3 Synthesis and Characterization of Self-activated TiO2/monazite Photocatalyst(2006 APAWTGORT國際會議)……..…….....123 附件 2.4 Photosynthesis and characterization of Pt, Fe and Ag modified TiO2(2006 APAWTGORT國際會議)………………..…..…...127

    1. H. Zhang, X. Quan, S. Chen, and H. Zhao, Environ. Sci. Technol. 40, 6104, 2006.
    2. S. Qourzal, A. Assabbane, Y. Ait-Ichou, Journal of Photochemistry and Photobiology A: Chemistry, 163, 317, 2004.
    3. A. A. Yawalkar, D. S. Bhatkhande, V. G. Pangarkar and A. ACM
    Beenackers, J. Chem. Technol. Biotechnol. 76, 363, 2001.
    4. L. C. Luchini, T. B. Peres, M. O. de O. Rezende, J. Radioanal. Nucl. Chem., 241, 191, 1999.
    5. T. Miyazaki, Y. Katsumura, M. Lin etal., Radiation Physics and Chemistry, 75, 408, 2006.
    6. M. A. Henderson, Ionization radiation induced catalysis on metal oxide particles, Dec. DOE Final report, 1999.
    7. S. Seino, T.A. Yamamoto, K. Hashimoto, S. Okuda, N. Chitose, S. Ueta, K. Okitsu, Rev. Adv. Mater. Sci., 4, 70, 2003.
    8. IAEA-TECDOC-1336, Combined methods for liquid radioactive waste treatment, 2003.
    9. Z.C. Jin, J. Hamberg, C.G. Granqvist, J. Appl. Phys. 64, 5117, 1988.
    10. J.B. Yoo, A.L. Fahrenbruch, R.H. Bube, J. Appl. Phys. 68, 4694, 1990.
    11. S. Major, S. Kumar, M. Bhatnagar, K.L. Chopra, Appl. Phys. Lett. 49, 394, 1986.
    12. A. Fujishma, A. Honda, nature 238, 37, 1972.
    13. Lathasree, S., Rao, A. N., SivaSankar, B., Sadasivam, V. and Rengaraj, K., Journal of Molecular Catalysis A: Chemical, 223, 101, 2004.
    14. Assabane, A., Ichou, Y. A., Tahiri, H., Guillard, C. and Herrmann, J. M., Applied Catalysis B: Environmental, 24, 71, 2000.
    15. Hu, C., Yu, J. C., Hao, Z. and Wong, P. K., Applied Catalysis B: Environmental, 42, 47, 2003.
    16. Parra, S., Stanca, S. E., Guasaquillo, I. and Thampi, K. R., Applied Catalysis B: Environmental, 51, 107, 2004.
    17. Wen, S., Zhao, J., Sheng, G., Fu, J. and Peng, P., Chemosphere, 50, 111, 2003.
    18. Tlennakone, K. and Wijayantha, K. G. U, Journal of Photochemistry and Photobiology A: Chemistry, 113, 89, 1998.
    19. M. Gratzel , N. Serpone, E. Pelizzetti, (Eds.),Photocatalysis: Fundamentals and Applications. Wiley/Interscience, New York, pp. 123–157, 1989.
    20. D.F. Ollis, E. Pelizzetti, N. Serpone,. Heterogeneous photocatalysis in the environment: application to water purification. Photocatalysis:
    Fundamentals and Applications. Wiley/Interscience, New York, pp. 603–637, 1989.
    21. C.S. Turchi, D.F. Ollis, 1990. J. Catal. 122, 178, 1990.
    22. C. Kormann, D.W. Bahnemann, M.R. Hoffmann, Environ. Sci. Technol. 25, 494, 1991.
    23. R. Terzian, N. Serpone, C. Minero, E. Pelizzetti, J. Catal. 128, 352, 1991.
    24. L.C. Chen, T.C. Chou, J. Mol. Catal. 85, 201, 1993.
    25. C. Nasr, K. Vinodgopal, L. Fisher, S. Hotchandani, A.K. Chattopadhyay, P.V. Kamat, J. Phys. Chem. 100, 8436, 1996.
    26. F. Zhang, J. Zhao, L. Zang, T. Shen, H. Hidaka, E. Pelizzetti,
    N. Serpone, J. Mol. Catal. A: Chem. 120, 173, 1997.
    27. J. Zhao, K. Wu, T. Wu, H. Hidaka, N. Serpone, J. Chem. Soc., Faraday Trans. 94, 673, 1998.
    28. C.Y. Hsiao, C.L. Lee, D.F. Ollis, J. Catal. 82, 418, 1983
    29. K. Vinodgopal, D.E. Wynkoop, P.V. Kamat, Environ. Sci. Technol. 30, 1660, 1996.
    30. F. Zhang, J. Zhao, T. Shen, H. Hidaka, E. Pelizzetti, N. Serpone, Appl. Catal. B: Environ. 15, 147, 1998.
    31. J.E. Cavanagh, H.S. Weinberg, A. Gold, G. Sangaiah, D. Marbury, W.H. Glaze, T.W. Collette, S.D. Richardson, A.D. Thurston Jr., Environ. Sci. Technol. 26, 1658, 1992.
    32. W.H. Glaze, J.F.Kenneke, J.L. Ferry, Environ. Sci. Technol. 27, 177, 1993.
    33. W.A. Jacoby, M.T. Nimlos, D.M. Blake, R.D. Noble,C.A. Koval, Environ. Sci. Technol. 28, 1661, 1994.
    34. J.T. Spadaro, L. Isabelle, V. Renganathan, Environ. Sci. Technol. 28, 1389, 1994.
    35. I. Izumi, W.W. Dunn, K.O. Wilbourn, F.F. Fan, A.J. Bard, J. Phys. Chem. 84, 3207, 1980.
    36. P. Reeves, R. Ohlhausen, D. Sloan, K. Pamplin, T. Scoggins, C.
    Clark, B. Hutchinson, D. Green, Solar Energy 48, 413, 1992.
    37. Alvaro M, Carbonell E, Fornes V, Garcia H. Chemphyschem. 16, 200 ,2006.
    38. Ettireddy P. Reddy, Bo Sun, Panagiotis G. Smirniotis, J. Phys. Chem. B, 108 (44), 17198, 2004.
    39. E. L. Tae, S. H. Lee, J. K. Lee, S. S. Yoo, E. J. Kang, K. B. Yoon, J. Phys. Chem. B, 109 (47), 22513, 2005.
    40. V. Subramanian, E. E. Wolf, P. V. Kamat, Langmuir, 19(2), 469, 2003.
    41. J. Y. Wang, Z. H. Liu, Q. Zheng, Z.K. He, R. X. Cai, Nanotechnology 17, 4561, 2006.
    42. A. Burns, W. Li, C. Baker, S.I. Shah, Mater. Res. Soc. Sym. Proc. Vol. 703, 2002.
    43. Linsebigler, A. L., Lu, G. and Yates Jr. J. T., Chemical Reviews, 95, 735, 1995.
    44. C. H. Langford, A. Starosud, E. Vaisman, etal., Advanced Oxidation process, 1999.
    45. Tennakone, K. and Bandara, J., Applied Catalysis A: General, 208, 335, 2001.
    46. Okamoto, K. I., Yamamoto, Y., Tanaka, H., Hanaka, M. and Itaya, A., Bulltein of the Chemistry Society Japan., 58, 2015, 1985.
    47. J. M. Herrmann, Catalysis Today 53, 115, 1999.
    48. M. Anpo, Pure Appl. Chem., 72, 2000, 1265.
    49. S.J. Jang, M.S. Kim, B.W. Kim, Water Research, 39, 2178, 2005.
    50. Liu S.X., Z.P. Qu, X.W. Han and C.L. Sun, Catalysis Today, 93, 877, 2004.
    51.Harada M. and H. Einaga, Catalysis Communications, 5, 63, 2004.
    52.Liu B., X. Zhao, N. Zhang, Q. Zhao, X. He and J. Feng, Surface Science, 595, 203, 2005.
    53. 高濂,鄭珊,張青紅,”奈米光觸媒”,Ch 7,台北,五南出
    版社。
    54. Ao, C.H. ; Lee, S.C., J. Photochem. Photobiol., A. 161, 131, 2004.
    55. H. Chen, A. Matsumoto, N. Nishimiya, K. Tsutsumi, Colloids and Surface A: Physicochemical and Engineering Aspects, 157, 295, 1999.
    56. T. Torimoto, S. Ito et al., Environ. Sci. Technol., 30, 1996, 1275.
    57. P. Fu, L. Yong, X. Dai, China Particuology, 2, 76, 2004.
    58. Y. Chen, K. Wang, L. Lou, J. Photo. Photo A: Chemistry, 163, 281, 2004.
    59. J. Chen, L. Eberlein, C. H, Langford, J. Photo. Photo A: Chemistry, 148, 183, 2002.
    60. S. Gelover, P. Mondragon, A. Jimenez, J. Photo. Photo A: Chemistry, 165, 241, 2004.
    61. S. Qourzal, A. Assabbane, Y. Ait-Ichou, J. Photo. Photo A: Chemistry, 163, 317, 2004.
    62. A. A. Yawalkar, D. S. Bhatkhande, V. G. Pangarkar, A. ACM Beenackers, J. Chem. Tech. Biotech., 76, 363, 2001.
    63. N. S. Naka, Y. W. Mito, United States Patent 5093302, 1992.
    64. Chitose, N.; Ueta, S.; Seino, S.; Yamamoto, T.A., Chemosphere .50, 1007, 2003.
    65. G. A. Zacheis, K. A. Gray, P. V. Kamat, J. Phys. Chem. B, 103, 2142, 1999.
    66. Y. Wada, K. Kawaguchi, M. Myouchin, Progress in Nucl. Energy, 29, 251, 1995.
    67. J. Jung, H. S. Jeong, H.H. Chung, etc., J. Radioanal. Nucl. Chem., 258, 543, 2003.
    68. T. Miyazaki, Y. Katsumura, M. Lin. etal., Radiation Phys. Chem., 75, 408, 2006.
    69. http://en.wikipedia.org/wiki/Radioluminescence.
    70. S. V. Vladimiro, V. S. Kaftanov, A.F. Nilov, etc., Atomic Energy, 90, 55, 2001.
    71. G. Blase, Chem. Mater., 6, 1465, 1994.
    72. R. Lindner, M. Reichling, E. Matthias, H. Johansen, Appl. Phys. B 68, 233, 1999.
    73. M. A. Fox, M. T. Dulay, Chem. Rev., 93, 341, 1993.
    74. Thomsen, V. and Schatzlein, D., Spectroscopy, 18, 18, 2003.
    75. G. R. Bamwenda, T. Uesigi, Y. Abe, etc., Applied Catalysis A: General, 205, 117, 2001.
    76. H. Wang, Y. Wu, B. Q. Xu, Applied Catalysis B: Environmental 59 , 139, 2005.
    77. H. Harada, T. Ueda, Chem. Phys. Lett. 106, 229, 1984.
    78. Z. Zhang,.C. C. Wang, R. Zakaria, J. Y. Ying, J. Phys. Chem. B, 102, 10871, 1998.
    79. P. D. Moran, J. R. Bartlett, G. A. Bowmaker, etc., Journal of Sol-Gel Science and Technology, 15, 251, 1999.
    80. W.J.E. Beek, R.A.J. Janssen, Advanced Functional Materials, 12, 519, 2002.
    81. J. C. Yu, Y. L. Chan, J. Chem. Educ., 75, 750, 1998.
    82.劉波、岳林海等,浙江大學學報(理學版),79頁,第31卷1期,2004年1月。
    83. D. G. Gilliland, M. L. Hitchman, S. C. Thompson, etc., Journal of Physique III, 2, 1381, 1992.
    84. P. Gao, Y. Xie , Z. Li, European Journal of Inorganic Chemistry, 16,3261, 2006.77. L. Lu, H. Cui, W. Li, H. Zhang, S. Xi, Chem. Mater. 13, 325, 2001.
    85. S. Sato, J. Catal. 1985, 92, 11.
    86. H. Nakamatsu, T. Kawai, A. Koreeda, S. Kawai, J. Chem. SOC.,
    Faraday Trans, 82, 527, 1985.
    87. C.R. Chenthamarakshan, K. Rajeshwar, Electrochemistry Communications, 2, 527, 2000.
    88. C. H. Daniel, Quantitative Chemical Analysis (Fifth edition), W.H Freeman and Company, New York, Appendex H, AP27.
    89. C.F. Wang, C.T. Yu, B.H. Lin, J.H. Lee, J. Photo. Photo A: Chemistry, 182, 93, 2006.
    90. J. C. G. Juarez, J. J. Becerril, Radiation physics and Chemistry, 75, 768, 2006.
    91. C.T. Yu, C.F. Wang, W. Z. Wang, J. Photo. Photo A: Chemistry, 186, 369, 2006.
    92. X.C. Jian, T.B. Wu, G.C. Yun, Nucl. Safety 37 (1996) 149–157.
    93. R.S. Juang, T.S. Lee, J. Hazard. Mater. B92 (2002) 301–314.
    94. P.A. Taylor, Destruction of Ion-Exchange Resin in Waste from the
    HFIR, T1, and T2 Tanks Using Fenton’s Reagent,
    ORNL/TM-2002/197, 2002.
    95. S. Lakshmi, R. Renganathan, S. Fujita, J. Photochem. Photobiol. A:
    Chem. 88, 163, 1995.
    96. S. J. Jang, M. S. Kim, B. W. Kim, Water Research, 39, 2178, 2005.
    97. A.V. Vorontsov, J. Photo. Photo A: Chemistry, 125, 113, 1999.
    98. M.C. Blount, J.L. Falconer, Applied Catalysis B: Environmental, 39, 39, 2002.
    99. L. Gao, H. Liu, J. Sun, Materials Science Forum, 486, 53, 2005.
    100. A. Sobczyński, L. Duczmal, W. Zmudziński, Journal of Molecular Catalysis A: Chemical, 213, 225, 2004.
    101. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemannt, Chemical Reviews, 95, 69, 1995.
    102. W. C. Schockley, J. Phys., 11, 81, 1961.
    103. D. J. Robbin, J. Electrochem Soc., 127, 2694, 1980.
    104. M. Kirm, A. Andrejczuk, J. Krzywinski, R. Sobierajski, Phys. Stat. Sol., 1, 649, 2005.
    105. D. Pieter, Nucl. Instruments and Methods in Physics Research, A 486, 208, 2002.
    106. S. X. Liu, Z. P. Qu, X. W. Han, C. L. Sun, Catalysis Today, 93, 877, 2004.
    107. A.L. Linsebigier, G. Lu, J.T. Yates, Chemical Reviews, 95, 735, 1995.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE