研究生: |
翁偉芃 Weng, Wei-Peng |
---|---|
論文名稱: |
奈米碳管/二氧化鈦/聚丙烯腈電紡絲複合材料之製備與性質分析 Preparation and properties of electrospun MWCNT/TiO2/PAN nanofiber composites |
指導教授: |
徐文光
Hsu, Wen-Kuang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 72 |
中文關鍵詞: | 奈米碳管 、電紡絲 、奈米纖維 、二氧化鈦 、光催化 、複合材料 |
外文關鍵詞: | Carbon nanotubes, Electrospinning, Nanofiber, TiO2, Photocatalysis, Composite |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
TiO2奈米顆粒之液相懸浮光催化反應時常伴隨著顆粒團聚、沈澱、難以回收等缺點,透過將TiO2負載於高分子聚合物纖維上,可有效改善上述問題。本實驗利用電紡絲製程,並以成絲性佳的聚丙烯腈(PAN)為基底,混入多壁奈米碳管及P25二氧化鈦粉體,製備奈米纖維複合材料,以改善奈米顆粒於液相懸浮光催化之缺點。
文獻報導指出多壁奈米碳管對自由基具有清除作用,添加多壁奈米碳管可望能減緩PAN基底受TiO2光催化降解之程度,增進複合材料之長久穩定性。
實驗結果顯示,在適當的參數下,可成功製得直徑約數百奈米的複合纖維,二氧化鈦顆粒均勻地分佈在奈米纖維中,且仍然具備良好的降解能力。亞甲基藍降解實驗中,在反應初期,含有MWCNTs及不含MWCNTs之樣品對亞甲基藍的降解能力相當,反應最終,含有MWCNTs之樣品亞甲基藍降解率略低於不含MWCNTs之樣品,但降解率差距微小。此外,樣品於五輪降解中皆保有90%上下的亞甲基藍降解能力,顯示本實驗所製備之光催化奈米纖維複合材料,具有良好的重複使用性。於UV下照射20小時後,含有MWCNTs的樣品較不含MWCNTs的樣品,擁有較為完整的纖維形貌,由亞甲基藍降解實驗,90%以上的MB在照射UV四小時後皆已被降解,故就實際應用來說,加入MWCNTs對於複合材料於紫外光照射下,提供了足夠的穩定性。
Liquid-phase suspension photocatalysis of TiO2 nanoparticles usually accompanies drawbacks such as particle agglomeration, UV hindrance and difficult recovery process. Immobilizing the nanoparticles on polymeric fibers provides an effective solution to these problems.
In this study, electrospun PAN-based nanofiber composites containing MWCNTs and P25-TiO2 are prepared, in order to eliminate the drawbacks regarding liquid-phase suspension photocatalysis, and to enhance the long-term stability of the composites.
Under appropriate experimental parameters, composite fibers with diameter of few hundred nanometers are successfully produced. TiO2 particles are uniformly embbed in the nanofibers, and the composites still exhibit superior photocatalytic performances.
The Methylene Blue (MB) photodegradation efficiencies are comparable between samples containing MWCNTs and those without MWCNTs. Besides, the nanocomposites possess reusability; MB degradation efficiency is maintained at approximately 90% during 5 runs of use for both samples. Furthermore, upon 20 hours UV irradiation, the composite containing MWCNTs shows less damaged fiber morphology than that without MWCNTs. According to MB degradation experiment, over 90% MB are degraded upon 4 hours UV irradiation; hence, the addition of MWCNTs provides sufficient stability to the composites.
1. J.H. Carey, J. Lawrence, and H.M. Tosine, Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions. Bull Environ Contam Toxicol, 1976. 16(6): p. 697-701.
2. D.M. Blake, Bibliography of work on the Photocatalytic Removal of Hazardous Compounds from Water and Air. 1999.
3. A. Mills and S. LeHunte, An overview of semiconductor photocatalysis. Journal of Photochemistry and Photobiology a-Chemistry, 1997. 108(1): p. 1-35.
4. A. Fujishima, K. Hashimoto, and T. Watanabe, eds. TiO2 Photocatalysis. 1999: Tokyo.
5. I. Sopyan, et al., An efficient TiO2 thin-film photocatalyst: Photocatalytic properties in gas-phase acetaldehyde degradation. Journal of Photochemistry and Photobiology a-Chemistry, 1996. 98(1-2): p. 79-86.
6. C.H. He and J. Gong, The preparation of PVA-Pt/TiO2 composite nanofiber aggregate and the photocatalytic degradation of solid-phase polyvinyl alcohol. Polymer Degradation and Stability, 2003. 81(1): p. 117-124.
7. C.E. Carraher and R.B. Seymour, Seymour/Carraher's polymer chemistry. 7th edition / ed. Undergraduate chemistry. 2008, Boca Raton: CRC Press. 738 p.
8. S. Ramakrishna, An introduction to electrospinning and nanofibers. 2005, Hackensack, NJ: World Scientific. xi, 382 p.
9. 林坤賢, et al., 以電紡絲製備奈米纖維. 化工, 2005. 52(5): p. 22-39.
10. B. Sundaray, et al., Electrical conductivity of a single electrospun fiber of poly(methyl methacrylate) and multiwalled carbon nanotube nanocomposite. Applied Physics Letters, 2006. 88(14).
11. J.M. Deitzel, et al., The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer, 2001. 42(1): p. 261-272.
12. A.K. Haghi and M. Akbari, Trends in electrospinning of natural nanofibers. Physica Status Solidi a-Applications and Materials Science, 2007. 204(6): p. 1830-1834.
13. D. Li and Y.N. Xia, Electrospinning of nanofibers: Reinventing the wheel? Advanced Materials, 2004. 16(14): p. 1151-1170.
14. D.H. Reneker and I. Chun, Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology, 1996. 7(3): p. 216-223.
15. D.H. Reneker, et al., Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. Journal of Applied Physics, 2000. 87(9): p. 4531-4547.
16. M. Bognitzki, et al., Nanostructured fibers via electrospinning. Advanced Materials, 2001. 13(1): p. 70-+.
17. Z.M. Huang, et al., A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology, 2003. 63(15): p. 2223-2253.
18. P. Dayal, et al., Experimental and theoretical investigations of porous structure formation in electrospun fibers. Macromolecules, 2007. 40(21): p. 7689-7694.
19. H. Fong, I. Chun, and D.H. Reneker, Beaded nanofibers formed during electrospinning. Polymer, 1999. 40(16): p. 4585-4592.
20. X.F. Lu, C. Wang, and Y. Wei, One-Dimensional Composite Nanomaterials: Synthesis by Electrospinning and Their Applications. Small, 2009. 5(21): p. 2349-2370.
21. 林建中, 高分子材料性質與應用. 2002: 高立圖書.
22. R.E. Farsani, et al., FT-IR Study of Stabilized PAN Fibers for Fabrication of Carbon Fibers. World Academy of Science, Engineering and Technology, 2009. 50: p. 430-433.
23. E.J. Ra, et al., Anisotropic electrical conductivity of MWCNT/PAN nanofiber paper. Chemical Physics Letters, 2005. 413(1-3): p. 188-193.
24. M.S. Dresselhaus, G. Dresselhaus, and P. Avouris, Carbon nanotubes : synthesis, structure, properties, and applications. Topics in applied physics v. 80. 2001, Berlin ; New York: Springer. xv, 447 p.
25. S. Iijima, Helical Microtubules of Graphitic Carbon. Nature, 1991. 354(6348): p. 56-58.
26. X.L. Xie, Y.W. Mai, and X.P. Zhou, Dispersion and alignment of carbon nanotubes in polymer matrix: A review. Materials Science & Engineering R-Reports, 2005. 49(4): p. 89-112.
27. J.P. Salvetat, et al., Elastic and shear moduli of single-walled carbon nanotube ropes. Physical Review Letters, 1999. 82(5): p. 944-947.
28. J. Liu, et al., Fullerene pipes. Science, 1998. 280(5367): p. 1253-1256.
29. H.Q. Hou, et al., Electrospun polyacrylonitrile nanofibers containing a high concentration of well-aligned multiwall carbon nanotubes. Chemistry of Materials, 2005. 17(5): p. 967-973.
30. I. Fenoglio, et al., Reactivity of carbon nanotubes: Free radical generation or scavenging activity? Free Radical Biology and Medicine, 2006. 40(7): p. 1227-1233.
31. P.C.P. Watts, et al., Carbon nanotubes as polymer antioxidants. Journal of Materials Chemistry, 2003. 13(3): p. 491-495.
32. P.J. Krusic, et al., RADICAL REACTIONS OF C60. Science, 1991. 254(5035): p. 1183-1185.
33. J.R. Morton, et al., ESR STUDIES OF THE REACTION OF ALKYL RADICALS WITH C-60. Journal of Physical Chemistry, 1992. 96(9): p. 3576-3578.
34. A.M.Y. Lin, et al., Carboxyfullerene prevents iron-induced oxidative stress in rat brain. Journal of Neurochemistry, 1999. 72(4): p. 1634-1640.
35. V.N. Popov, Carbon nanotubes: properties and application. Materials Science & Engineering R-Reports, 2004. 43(3): p. 61-102.
36. 吳佩霖, 奈米碳管/氯化鋰/聚丙烯腈複合材料之電紡絲製備, in 材料科學與工程學系. 2009, 國立清華大學.
37. A. Fujishima and K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 1972. 238(5358): p. 37-+.
38. 林榮良, TiO 2 光催化原理和應用例子 CHEMISTRY (THE CHINESE CHEM. SOC., TAIPEI), 2002. 60(3): p. 457-461.
39. Titanium-Oxide Photocatalyst. Three Bond Technical News, 2004(62).
40. H. Tang, et al., Electrical and Optical-Properties of Tio2 Anatase Thin-Films. Journal of Applied Physics, 1994. 75(4): p. 2042-2047.
41. H. Uchida, S. Itoh, and H. Yoneyama, PHOTOCATALYTIC DECOMPOSITION OF PROPYZAMIDE USING TIO2 SUPPORTED ON ACTIVATED CARBON. Chemistry Letters, 1993(12): p. 1995-1998.
42. T. Torimoto, et al., Effects of adsorbents used as supports for titanium dioxide loading on photocatalytic degradation of propyzamide. Environmental Science & Technology, 1996. 30(4): p. 1275-1281.
43. B. Ohtani, et al., Role of platinum deposits on titanium(IV) oxide particles: Structural and kinetic analyses of photocatalytic reaction in aqueous alcohol and amino acid solutions. Journal of Physical Chemistry B, 1997. 101(17): p. 3349-3359.
44. K. Woan, G. Pyrgiotakis, and W. Sigmund, Photocatalytic Carbon-Nanotube-TiO2 Composites. Advanced Materials, 2009. 21(21): p. 2233-2239.
45. M.R. Hoffmann, et al., ENVIRONMENTAL APPLICATIONS OF SEMICONDUCTOR PHOTOCATALYSIS. Chemical Reviews, 1995. 95(1): p. 69-96.
46. W.D. Wang, et al., Visible light photodegradation of phenol on MWNT-TiO2 composite catalysts prepared by a modified sol-gel method. Journal of Molecular Catalysis a-Chemical, 2005. 235(1-2): p. 194-199.
47. G. Pyrgiotakis, S.H. Lee, and W. Sigmund, Advanced Photocatalysis with Anatase Nano-Coated Multi-Walled Carbon Nanotubes, in MRS Spring Meeting. 2005: San Francisco, CA.
48. J.F. Tanguay, S.L. Suib, and R.W. Coughlin, Dichloromethane Photodegradation Using Titanium Catalysts. Journal of Catalysis, 1989. 117(2): p. 335-347.
49. J. Matos, J. Laine, and J.M. Herrmann, Synergy effect in the photocatalytic degradation of phenol on a suspended mixture of titania and activated carbon. Applied Catalysis B-Environmental, 1998. 18(3-4): p. 281-291.
50. Y. Ou, et al., MWNT-TiO2 : Ni composite catalyst: A new class of catalyst for photocatalytic H-2 evolution from water under visible light illumination. Chemical Physics Letters, 2006. 429(1-3): p. 199-203.
51. N. Grobert, et al., Enhanced magnetic coercivities in Fe nanowires. Applied Physics Letters, 1999. 75(21): p. 3363-3365.
52. G.J. Hu, et al., Anatase TiO2 nanoparticles/carbon nanotubes nanofibers: preparation, characterization and photocatalytic properties. Journal of Materials Science, 2007. 42(17): p. 7162-7170.
53. Y. Yu, et al., Enhancement of adsorption and photocatalytic activity of TiO2 by using carbon nanotubes for the treatment of azo dye. Applied Catalysis B-Environmental, 2005. 61(1-2): p. 1-11.
54. W.D. Wang, et al., Photocatalytic degradation of phenol on MWNT and titania composite catalysts prepared by a modified sol-gel method. Applied Catalysis B-Environmental, 2005. 56(4): p. 305-312.
55. 陳超, et al., 靜電紡絲製備TiO2 /PAN納米纖維氈及其性能研究. Environmental Science and Management, 2009. 34(2): p. 105-109.
56. J.S. Im, M. Il Kim, and Y.S. Lee, Preparation of PAN-based electrospun nanofiber webs containing TiO2 for photocatalytic degradation. Materials Letters, 2008. 62(21-22): p. 3652-3655.
57. S. Madhugiri, et al., Electrospun mesoporous titanium dioxide fibers. Microporous and Mesoporous Materials, 2004. 69(1-2): p. 77-83.
58. S. Kedem, et al., Composite polymer nanofibers with carbon nanotubes and titanium dioxide particles. Langmuir, 2005. 21(12): p. 5600-4.
59. S. Kedem, et al., Enhanced Stability Effect in Composite Polymeric Nanofibers Containing Titanium Dioxide and Carbon Nanotubes. Journal of Physical Chemistry C, 2009. 113(33): p. 14893-14899.
60. J.J. Ding, Origin of spin characters in carbon nanotubes, in Materials Science and Engineering. 2009, National Tsing-Hua University: Hsin-Chu.
61. M.S.A. Rahaman, A.F. Ismail, and A. Mustafa, A review of heat treatment on polyacrylonitrile fiber. Polymer Degradation and Stability, 2007. 92(8): p. 1421-1432.
62. J. Liu, et al., Thermo-chemical reactions occurring during the oxidative stabilization of electrospun polyacrylonitrile precursor nanofibers and the resulting structural conversions. Carbon, 2009. 47(4): p. 1087-1095.
63. L.X. Cao, et al., Photocatalytic oxidation of toluene on nanoscale TiO2 catalysts: Studies of deactivation and regeneration. Journal of Catalysis, 2000. 196(2): p. 253-261.