研究生: |
謝秉文 Hsieh, Ping-Wen |
---|---|
論文名稱: |
臨場觀測氧化鎵奈米線與鈦金屬之介面工程 In-Situ TEM Observations of Interface Engineering between Ti and Ga2O3 |
指導教授: |
呂明諺
Lu, Ming-Yen |
口試委員: |
吳文偉
Wu, Wen-Wei 呂明霈 Lu, Ming-Pei |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2023 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 86 |
中文關鍵詞: | TEM臨場觀測 、氧化鎵奈米線 、鈦 、介面工程 、歐姆接觸 、擴散 |
外文關鍵詞: | In-situ TEM, Ga2O3 nanowires, Titanium, Interface engineering, Ohmic contact, Diffusion |
相關次數: | 點閱:70 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現今人類文明的進步已離不開電子元件的使用,元件所利用的半導體材料也不斷發展。考量到能源轉換效率,未來的功率元件中需要能替代目前材料的新選項,這類具有極寬能隙的半導體材料被稱為第四代半導體。氧化鎵(Ga2O3)為第四代半導體材料之一,因為其良好的材料特性及發展潛力受到矚目。金屬/半導體間的接觸為影響元件電性表現的關鍵因素,接觸金屬須於導通時達成歐姆接觸,確保低接觸電阻以降低功耗。針對Ga2O3,Ti為最常使用的接觸金屬,然而其形成歐姆接觸的介面反應與機制仍有爭議。本研究針對實際的Ga2O3奈米線元件進行電性分析,並利用電子顯微鏡分析Ti與Ga2O3奈米線間的介面工程,並透過穿透式電子顯微鏡臨場加熱並觀察反應的進行。
第一部分的研究針對Au/Ti/Ga2O3奈米線元件進行電性量測,在退火處理後,可使元件之電流電壓曲線由整流特性轉變為歐姆接觸,TEM分析顯示其介面結構有鎵-鈦合金相生成。退火前,Ti/Ga2O3金半接面的能帶結構具有蕭特基能障,我們推測高溫退火後所形成的鎵-鈦合金相具有更低的功函數,使介面能形成低電阻之歐姆接觸。
第二部分的研究,我們製備橫截面樣品臨場觀測Ti與Ga2O3奈米線於加熱下的介面反應,發現當加熱至400 °C以上時,Ti/Ga2O3介面將開始發生交互擴散,並於介面觀測到結晶相生成並朝著Ti金屬成長變厚。透過EDS分析、STEM原子影像及繞射點分析,確認該層材料為退火時所形成的鎵-鈦合金相。同時也發現加熱至500 °C以上,介面會因為元素擴散及高真空缺氧環境而累積缺陷,進而出現孔洞,出現孔洞後Ga2O3會隨之昇華分解。
The progress of human civilization is inseparable from the use of electronic devices, and the semiconductor materials used in these devices continue to evolve. Considering energy conversion efficiency, we need new alternatives that can replace current materials for power electronics application. Materials with ultra-wide bandgap are referred to as the fourth generation of semiconductors. Ga2O3 is one of them and attracting attention due to its promising properties. For Ga2O3, titanium (Ti) is the most commonly used contact metal. However, the interfacial reaction and mechanism contributes to ohmic contact remain controversial. In this study, electrical analysis is conducted on prepared Ga2O3 NW devices. And we use in-situ TEM techniques to study the interface engineering between Ga2O3 and Ti under heating environments.
In the first part of the research, electrical analysis is performed on fabricated Ga2O3 NW devices. After annealing, the IV characteristics of the device transformed from rectifying behavior to ohmic contact. TEM analysis confirms the formation of different phase at Ti/Ga2O3 interface.
In the second part of the research, we use in-situ TEM heating and find out diffusion occurred between Ti and Ga2O3 when heated over 400 °C. A crystalline phase gradually formed at the interface. Using EDS analysis, STEM images and diffraction point analysis, it is confirmed that the formed material is a Ga-Ti alloy phase. It is believed that Ga-Ti alloy phase possess lower work function, which enabled the ohmic contact. Additionally, we find out heating above 500 °C led to accumulation of defects at interface due to the diffusion and high-vacuum environment. As a result, voids will appear and causes Ga2O3 to decompose.
1. Kolahalam LA, Kasi Viswanath IV, Diwakar BS, Govindh B, Reddy V, Murthy YLN. Review on nanomaterials: Synthesis and applications. Materials Today: Proceedings 18, 2182-2190 (2019).
2. Roduner E. Size matters: why nanomaterials are different. Chemical Society Reviews 35, 583-592 (2006).
3. García de Arquer FP, Talapin DV, Klimov VI, Arakawa Y, Bayer M, Sargent EH. Semiconductor quantum dots: Technological progress and future challenges. Science 373, eaaz8541 (2021).
4. Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein Journal of Nanotechnology 9, 1050-1074 (2018).
5. Fan HJ, Werner P, Zacharias M. Semiconductor Nanowires: From Self-Organization to Patterned Growth. Small 2, 700-717 (2006).
6. Xia Y, et al. One-Dimensional Nanostructures: Synthesis, Characterization, and Applications. Advanced Materials 15, 353-389 (2003).
7. Koppens FHL, Mueller T, Avouris P, Ferrari AC, Vitiello MS, Polini M. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nature Nanotechnology 9, 780-793 (2014).
8. Poh TY, et al. Inhaled nanomaterials and the respiratory microbiome: clinical, immunological and toxicological perspectives. Particle and Fibre Toxicology 15, 46 (2018).
9. Chan CK, et al. High-performance lithium battery anodes using silicon nanowires. Nature Nanotechnology 3, 31-35 (2008).
10. Garcia-Gil A, et al. High Aspect-ratio Germanium-Tin Alloy Nanowires: Potential as Highly Efficient Li-Ion Battery Anodes. Advanced Materials Interfaces 9, 2201170 (2022).
11. Chen HM, Chen CK, Liu R-S, Zhang L, Zhang J, Wilkinson DP. Nano-architecture and material designs for water splitting photoelectrodes. Chemical Society Reviews 41, 5654-5671 (2012).
12. Amjadi M, Pichitpajongkit A, Lee S, Ryu S, Park I. Highly Stretchable and Sensitive Strain Sensor Based on Silver Nanowire–Elastomer Nanocomposite. ACS Nano 8, 5154-5163 (2014).
13. Szczech JR, Jin S. Nanostructured silicon for high capacity lithium battery anodes. Energy & Environmental Science 4, 56-72 (2011).
14. Singh N, et al. High-performance fully depleted silicon nanowire (diameter ≤ 5 nm) gate-all-around CMOS devices. IEEE Electron Device Letters 27, 383-386 (2006).
15. Weber WM, Mikolajick T. Silicon and germanium nanowire electronics: physics of conventional and unconventional transistors. Reports on Progress in Physics 80, 066502 (2017).
16. Jia C, Lin Z, Huang Y, Duan X. Nanowire Electronics: From Nanoscale to Macroscale. Chemical Reviews 119, 9074-9135 (2019).
17. Liu A-C, Lai Y-Y, Chen H-C, Chiu A-P, Kuo H-C. A Brief Overview of the Rapid Progress and Proposed Improvements in Gallium Nitride Epitaxy and Process for Third-Generation Semiconductors with Wide Bandgap. Micromachines 14, 764 (2023).
18. Roccaforte F, et al. Emerging trends in wide band gap semiconductors (SiC and GaN) technology for power devices. Microelectronic Engineering 187-188, 66-77 (2018).
19. Ueda T. Reliability issues in GaN and SiC power devices. In: 2014 IEEE International Reliability Physics Symposium 3D.4.1-3D.4.6 (IEEE, New York, 2014).
20. Tsao JY, et al. Ultrawide-Bandgap Semiconductors: Research Opportunities and Challenges. Advanced Electronic Materials 4, 1600501 (2018).
21. Singh R, et al. The dawn of Ga2O3 HEMTs for high power electronics - A review. Materials Science in Semiconductor Processing 119, 105216 (2020).
22. Pearton SJ, et al. A review of Ga2O3 materials, processing, and devices. Applied Physics Reviews 5, 011301 (2018).
23. Kim H. Control and understanding of metal contacts to β-Ga2O3 single crystals: a review. SN Applied Sciences 4, 27 (2021).
24. Guo Z, et al. Anisotropic thermal conductivity in single crystal β-gallium oxide. Applied Physics Letters 106, 111909 (2015).
25. Sasaki K, Kuramata A, Masui T, Víllora EG, Shimamura K, Yamakoshi S. Device-Quality β-Ga2O3 Epitaxial Films Fabricated by Ozone Molecular Beam Epitaxy. Applied Physics Express 5, 035502 (2012).
26. Jang S, et al. A comparative study of wet etching and contacts on (-201) and (010) oriented β-Ga2O3. Journal of Alloys and Compounds 731, 118-125 (2018).
27. Lyle LAM, et al. Electrical and chemical analysis of Ti/Au contacts to β-Ga2O3. APL Materials 9, 061104 (2021).
28. Fu H, et al. A Comparative Study on the Electrical Properties of Vertical (201) and (010) β-Ga2O3 Schottky Barrier Diodes on EFG Single-Crystal Substrates. IEEE Transactions on Electron Devices 65, 3507-3513 (2018).
29. Li Y, et al. Efficient Assembly of Bridged β-Ga2O3 Nanowires for Solar-Blind Photodetection. Advanced Functional Materials 20, 3972-3978 (2010).
30. Guo D, et al. Fabrication of β-Ga2O3 thin films and solar-blind photodetectors by laser MBE technology. Opt Mater Express 4, 1067-1076 (2014).
31. Lin H-J, et al. Perovskite Nanoparticle-Sensitized Ga2O3 Nanorod Arrays for CO Detection at High Temperature. ACS Applied Materials & Interfaces 8, 8880-8887 (2016).
32. Lin H-J, Gao H, Gao P-X. UV-enhanced CO sensing using Ga2O3-based nanorod arrays at elevated temperature. Applied Physics Letters 110, 043101 (2017).
33. Baliga BJ. Fundamentals of power semiconductor devices. Springer Science & Business Media (2010).
34. Baliga BJ. Semiconductors for high‐voltage, vertical channel field‐effect transistors. Journal of Applied Physics 53, 1759-1764 (1982).
35. Venkata Prasad C, Rim YS. Review on interface engineering of low leakage current and on-resistance for high-efficiency Ga2O3-based power devices. Materials Today Physics 27, 100777 (2022).
36. Ueda N, Hosono H, Waseda R, Kawazoe H. Synthesis and control of conductivity of ultraviolet transmitting β-Ga2O3 single crystals. Applied Physics Letters 70, 3561-3563 (1997).
37. Galazka Z, et al. Czochralski growth and characterization of β-Ga2O3 single crystals. Crystal Research and Technology 45, 1229-1236 (2010).
38. Sheoran H, Kumar V, Singh R. A Comprehensive Review on Recent Developments in Ohmic and Schottky Contacts on Ga2O3 for Device Applications. ACS Applied Electronic Materials 4, 2589-2628 (2022).
39. Higashiwaki M, Sasaki K, Kuramata A, Masui T, Yamakoshi S. Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates. Applied Physics Letters 100, 013504 (2012).
40. Green AJ, et al. 3.8-MV/cm Breakdown Strength of MOVPE-Grown Sn-Doped β-Ga2O3 MOSFETs. IEEE Electron Device Letters 37, 902-905 (2016).
41. Sasaki K, Higashiwaki M, Kuramata A, Masui T, Yamakoshi S. β-Ga2O3 Schottky Barrier Diodes Fabricated by Using Single-Crystal β-Ga2O3 (010) Substrates. IEEE Electron Device Letters 34, 493-495 (2013).
42. Muhammed MM, Alwadai N, Lopatin S, Kuramata A, Roqan IS. High-Efficiency InGaN/GaN Quantum Well-Based Vertical Light-Emitting Diodes Fabricated on β-Ga2O3 Substrate. ACS Applied Materials & Interfaces 9, 34057-34063 (2017).
43. Krishnamoorthy K. Novel Nanomaterials. IntechOpen (2021).
44. Weng T-F, Ho M-S, Sivakumar C, Balraj B, Chung P-F. VLS growth of pure and Au decorated β-Ga2O3 nanowires for room temperature CO gas sensor and resistive memory applications. Applied Surface Science 533, 147476 (2020).
45. Du J, et al. Highly sensitive and ultrafast deep UV photodetector based on a β-Ga2O3 nanowire network grown by CVD. Journal of Physics D: Applied Physics 49, 425105 (2016).
46. Kumar M, Kumar V, Singh R. Diameter Tuning of β-Ga2O3 Nanowires Using Chemical Vapor Deposition Technique. Nanoscale Research Letters 12, 184 (2017).
47. Jia C, Jeon D-W, Xu J, Yi X, Park J-H, Zhang Y. Catalyst-Assisted Large-Area Growth of Single-Crystal β-Ga2O3 Nanowires on Sapphire Substrates by Metal–Organic Chemical Vapor Deposition. Nanomaterials 10, 1031 (2020).
48. Wang J, Zhuang H, Zhang X, Zhang S, Li J. Synthesis and properties of β-Ga2O3 nanostructures. Vacuum 85, 802-805 (2011).
49. Han WQ, Kohler-Redlich P, Ernst F, Rühle M. Growth and microstructure of Ga2O3 nanorods. Solid State Communications 115, 527-529 (2000).
50. Quan Y, Fang D, Zhang X, Liu S, Huang K. Synthesis and characterization of gallium oxide nanowires via a hydrothermal method. Materials Chemistry and Physics 121, 142-146 (2010).
51. Reddy LS, Ko YH, Yu JS. Hydrothermal Synthesis and Photocatalytic Property of β-Ga2O3 Nanorods. Nanoscale Research Letters 10, 364 (2015).
52. Neamen DA. Semiconductor Physics and Devices: Basic Principles. McGraw-Hill (2012).
53. Sasaki K, Higashiwaki M, Kuramata A, Masui T, Yamakoshi S. Ga2O3 Schottky Barrier Diodes Fabricated by Using Single-Crystal β–Ga2O3 (010) Substrates. IEEE Electron Device Letters 34, 493-495 (2013).
54. Lyle LAM, House SD, Yang JC, Porter LM. Nanoscale Characterization of Chemical and Structural Properties of the Au/(100) β-Ga2O3 Interface. ACS Applied Electronic Materials 4, 4471-4481 (2022).
55. Fujishima T, et al. Formation of low resistance ohmic contacts in GaN-based high electron mobility transistors with BCl3 surface plasma treatment. Applied Physics Letters 103, 083508 (2013).
56. Luther BP, Mohney SE, Jackson TN, Asif Khan M, Chen Q, Yang JW. Investigation of the mechanism for Ohmic contact formation in Al and Ti/Al contacts to n-type GaN. Applied Physics Letters 70, 57-59 (1997).
57. Tak BR, et al. Point defects induced work function modulation of β-Ga2O3. Applied Surface Science 465, 973-978 (2019).
58. Lyle LAM. Critical review of Ohmic and Schottky contacts to β-Ga2O3. Journal of Vacuum Science & Technology A 40, 060802 (2022).
59. Higashiwaki M, et al. Depletion-mode Ga2O3 metal-oxide-semiconductor field-effect transistors on β-Ga2O3 (010) substrates and temperature dependence of their device characteristics. Applied Physics Letters 103, 123511 (2013).
60. Yao Y, Davis RF, Porter LM. Investigation of Different Metals as Ohmic Contacts to β-Ga2O3: Comparison and Analysis of Electrical Behavior, Morphology, and Other Physical Properties. Journal of Electronic Materials 46, 2053-2060 (2017).
61. Lee M-H, Peterson RL. Interfacial reactions of titanium/gold ohmic contacts with Sn-doped β-Ga2O3. APL Materials 7, 022524 (2019).
62. Lee M-H, Chou T-S, Bin Anooz S, Galazka Z, Popp A, Peterson RL. Effect of post-metallization anneal on (100) Ga2O3/Ti–Au ohmic contact performance and interfacial degradation. APL Materials 10, 091105 (2022).
63. Lee M-H, Peterson RL. Annealing Induced Interfacial Evolution of Titanium/Gold Metallization on Unintentionally Doped β-Ga2O3. ECS Journal of Solid State Science and Technology 8, Q3176 (2019).
64. Callahan WA, et al. Ultrathin stable Ohmic contacts for high-temperature operation of β-Ga2O3 devices. Journal of Vacuum Science & Technology A 41, 043211 (2023).
65. Smigelskas A. Zinc diffusion in alpha brass. Trans Aime 171, 130-142 (1947).
66. Tavoosi M. The Kirkendall void formation in Al/Ti interface during solid-state reactive diffusion between Al and Ti. Surfaces and Interfaces 9, 196-200 (2017).
67. Wang W, Dahl M, Yin Y. Hollow Nanocrystals through the Nanoscale Kirkendall Effect. Chemistry of Materials 25, 1179-1189 (2013).
68. Lin Y, Wu X, Li Y, Cheng F, Liu W, Ge B. Revealing multi-stage growth mechanism of Kirkendall voids at electrode interfaces of Bi2Te3-based thermoelectric devices with in-situ TEM technique. Nano Energy 102, 107736 (2022).
69. Wang S-C, et al. Complete Replacement of Metal in Metal Oxide Nanowires via Atomic Diffusion: In/ZnO Case Study. Nano Letters 14, 3241-3246 (2014).
70. Asoro MA, Kovar D, Ferreira PJ. In situ Transmission Electron Microscopy Observations of Sublimation in Silver Nanoparticles. ACS Nano 7, 7844-7852 (2013).
71. Gavhane DS, et al. In situ electron microscopy study of structural transformations in 2D CoSe2. npj 2D Materials and Applications 5, 24 (2021).
72. Zhang H, Xu T, Yu K, Wang W, He L, Sun L. Tailoring atomic diffusion for in situ fabrication of different heterostructures. Nature Communications 12, 4812 (2021).
73. Miller BK, Crozier PA. Analysis of Catalytic Gas Products Using Electron Energy-Loss Spectroscopy and Residual Gas Analysis for Operando Transmission Electron Microscopy. Microscopy and Microanalysis 20, 815-824 (2014).
74. Zhu G-Z, Prabhudev S, Yang J, Gabardo CM, Botton GA, Soleymani L. In Situ Liquid Cell TEM Study of Morphological Evolution and Degradation of Pt–Fe Nanocatalysts During Potential Cycling. The Journal of Physical Chemistry C 118, 22111-22119 (2014).
75. Grosso RL, et al. In Situ Transmission Electron Microscopy for Ultrahigh Temperature Mechanical Testing of ZrO2. Nano Letters 20, 1041-1046 (2020).
76. Chen R, Jungjohann KL, Mook WM, Nogan J, Dayeh SA. Atomic Scale Dynamics of Contact Formation in the Cross-Section of InGaAs Nanowire Channels. Nano Letters 17, 2189-2196 (2017).
77. Chicos L-A, et al. Effect of concentrated solar energy on microstructure evolution of selective laser melted Ti-6Al-4V alloy. The International Journal of Advanced Manufacturing Technology 118, 3183-3207 (2022).
78. Wang S, et al. In situ synthesis of monoclinic β-Ga2O3 nanowires on flexible substrate and solar-blind photodetector. Journal of Alloys and Compounds 787, 133-139 (2019).
79. Chen XL, Lan YC, Li JY, Cao YG, He M. Radial growth dynamics of nanowires. Journal of Crystal Growth 222, 586-590 (2001).
80. Schewski R, et al. Evolution of planar defects during homoepitaxial growth of β-Ga2O3 layers on (100) substrates—A quantitative model. Journal of Applied Physics 120, 225308 (2016).
81. Kumar S, Dhara S, Agarwal R, Singh R. Study of photoconduction properties of CVD grown β-Ga2O3 nanowires. Journal of Alloys and Compounds 683, 143-148 (2016).
82. Wang Y, Su J, Lin Z, Zhang J, Chang J, Hao Y. Recent progress on the effects of impurities and defects on the properties of Ga2O3. Journal of Materials Chemistry C 10, 13395-13436 (2022).
83. Varley JB, Weber JR, Janotti A, Van de Walle CG. Oxygen vacancies and donor impurities in β-Ga2O3. Applied Physics Letters 97, 142106 (2010).
84. Qu G, et al. Single β-Ga2O3 nanowire back-gate field-effect transistor. Semiconductor Science and Technology 37, 085009 (2022).
85. Martinez WE, Gregori G, Mates T. Titanium diffusion in gold thin films. Thin Solid Films 518, 2585-2591 (2010).
86. Colinet C, Tedenac J-C. Structural stability of intermetallic phases in the Ga–Ti system. Calphad 35, 133-141 (2011).
87. Liu Y, Tedenac JC, Su XP, Colinet C, Wang JH. An updated thermodynamic modeling of the Ga–Ti system. Calphad 41, 140-149 (2013).
88. Kyrtsos A, Matsubara M, Bellotti E. Migration mechanisms and diffusion barriers of vacancies in Ga2O3. Physical Review B 95, 245202 (2017).
89. Lee M-H, Chou T-S, Bin Anooz S, Galazka Z, Popp A, Peterson RL. Exploiting the Nanostructural Anisotropy of β-Ga2O3 to Demonstrate Giant Improvement in Titanium/Gold Ohmic Contacts. ACS Nano 16, 11988-11997 (2022).
90. Togashi R, et al. Thermal stability of β-Ga2O3 in mixed flows of H2 and N2. Japanese Journal of Applied Physics 54, 041102 (2015).
91. Wei P, Zhu D, Huang S, Zhou W, Luo F. Effects of the annealing temperature and atmosphere on the microstructures and dielectric properties of ZnO/Al2O3 composite coatings. Applied Surface Science 285, 577-582 (2013).
92. Wang H, et al. Recrystallization behavior, oxygen vacancy and photoluminescence performance of sputter-deposited Ga2O3 films via high-vacuum in situ annealing. Ceramics International 48, 3481-3488 (2022).
93. Bandi M, et al. Effect of Titanium Induced Chemical Inhomogeneity on Crystal Structure, Electronic Structure, and Optical Properties of Wide Band Gap Ga2O3. Crystal Growth & Design 20, 1422-1433 (2020).
94. Zhang Z, et al. First-principle calculations of electronic and optical properties of Ti-doped β-Ga2O3 with intrinsic defects. Materials Research Express 6, 105920 (2019).
95. Usseinov A, et al. Vacancy Defects in Ga2O3: First-Principles Calculations of Electronic Structure. Materials 14, 7384 (2021).
96. Zacherle T, Schmidt PC, Martin M. Ab initio calculations on the defect structure of β-Ga2O3. Physical Review B 87, 235206 (2013).
97. McCluskey MD. Point defects in Ga2O3. Journal of Applied Physics 127, 101101 (2020).