研究生: |
李建勳 |
---|---|
論文名稱: |
供應商管理庫存下之預測補貨策略 Forecast and Replenishment Strategies under Vendor-Managed Inventory |
指導教授: |
林則孟
James T. Lin |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 105 |
中文關鍵詞: | 滾動式預測 、預測補貨程序 、安全庫存 、供應商管理庫存 |
外文關鍵詞: | rolling forecast, forecast replenishment procedure, safety stock, VMI |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著微利時代的來臨,供應鏈上下游間面臨品牌廠商給予成本壓力與同質性製造商替代性高的壓力下,迫使買方需將上游賣方納入供應鏈行列,有效的快速反應供應鏈能力與降低供應鏈庫存,因此許多買方紛紛要求賣方採用供應商管理庫存(Vendor-Managed Inventory, VMI)方式,要求賣方就近提供集散中心(Hub),將補貨與庫存責任交由賣方進行管理,以減少庫存資金積壓。而台灣企業大多身為賣方元件供應商的角色,因此本研究以賣方的觀點,藉由買方提供滾動式預測(Rolling Forecast)的資訊來做為預測補貨的方式,期望賣方能提供高服務水準下又能降低賣方Hub庫存成本為本研究探討之重點。
首先本研究利用預測補貨程序(Forecast Replenishment Procedure, FRP)來做為補貨規劃,並藉由運算表格運作方式將預測、補貨、庫存等繁雜事件,藉由簡易對應表格來運行,使各行為能清楚區分運作內容和彼此相對應之操作,提供實務上各Hub管理人員做為未來補貨規劃之參考。而FRP中安全庫存為直接影響補貨策略之關鍵,為了達到高服務水準低庫存之目標,本研究將補貨策略分為保守策略和積極策略。保守策略為依買方預定安全庫存標準來做為補貨策略,使得賣方在面臨缺貨時不需承擔高額懲罰費用;積極策略為賣方主動調整安全庫存來做為補貨策略,因此希望透過模擬分析與實驗設計與結果能夠找出穩健安全庫存策略,使得賣方在面臨買方不同需求環境下之補貨策略能夠主動調整補貨策略。
最後,在實驗分析結果求得本研究最穩健之補貨策略--動態預測總誤差安全庫存策略。在買賣雙方皆未知未來需求下,能適用在不同需求趨勢、變異環境,並接近買方預定安全庫存之較佳解,使得總成本績效能達到高服務水準下,降低庫存成本的目標。另外可比較買方所預定的安全庫存量是否高估或低估來做為補貨策略調整,提供業界作為補貨規劃的參考方法。
1.VICS CPFR官方網站, http://www.cpfr.org/
2.林則孟,「生產計畫與管理」,華泰文化,2006。
3.張怡筠,「CPFR中滾動式預測的關鍵因子探討」,國立清華大學資訊系統與應用所碩士論文,2006。
4.陳昭廷,「CPFR協同預測中之承諾機制的影響因子分析」,國立清華大學工業工程管理學所碩士論文,2007。
5.謝依潔,「供應鏈滾動預測與訂單策略之模擬研究」,國立中央大學資訊管理學系碩士論文,2007。
6.Babaï, M. Z. and Dallery, Y., “Dynamic versus Static Control Policies in Single Stage Production Inventory Systems”, International Journal of Production Research, 2006.
7.Ballou, R.H., “Business logistics management: planning, organizing, and controlling the supply chain”, 4th ed, Prentice Hall, NJ,USA. 1999.
8.Boulaksil, Y., Fransoo, J.C. and Ernico, N. G. van Halm,. “Setting safety stocks in multi-stage inventory systems under rolling horizon mathematical programming models”, OR spectrum, 2007.
9.Enns, S.T., “MRP Performance effects due to forecast bias and demand uncertainly”, European Journal of Operational Research, 138(1), p87-102 ,2002
10.Fildes, R., “The evaluation of extrapolative forecasting methods with discussion”, International Journal of Forecasting, 8(1), pp.81-111, 1992.
11.Giulio, Z., “The impact of distributions of uncertain lumpy demand on inventories” , Production Planning & Control, 11(1), pp.32- 43, 2000.
12.Goodwin, P., Fildes, R., “Judgmental forecasts of time series affected by special event: does providing a statistical forecast improve accuracy”, Journal of Behavioral Decision Making, 12(1), pp.37-53, 1999.
13.Krupp, J.A.G., “Safety stock management”, Production and Inventory Management Journal, 38(3) ,1997.
14.Lawrence, M., & O'Connor, M., “Sale forecasting updates: how good are they in practices ”, International Journal of Forecasting, 16(4), pp.369-382, 2000.
15.Marcia P. and Amrik S.S., “Effective quick response practices in a supply chain prtnership”, International Journal of Operations & Production Management, 21(5-6), pp.840-854, 2001.
16.Matt, J., “Collaboration Data Modeling: CPFR Implementation Guidelines”, Annual Conference Proceedings of the Council of Logistics Management,1999.
17.Neale, J.J., Tomlin, B.T., Willems, S.P., “The role of inventory in superior supply chain performance”. In: Harrison, T., Lee, H. and Neale, J.J.(eds): The Practice of Supply Chain Managedment: Where Theory and Application Convere. 31-59, 2003.
18.Nordhasu, W. “Forecasting efficiency: concepts and applications”, Review of Economics and Static, 69, pp.667-674, 1987
19.Piplani, R., Viswanathan, S., “A model for evaluating supplier-owned inventory strategy”, International Journal of Production Economics, 81-82, 2003.
20.Pohlen, T.L., Goldsby, T.J., “VMI and SMI programs How economic value added can help sell the change”, International Journal of Physical Distribution & Logistics Management, 33,7,2003.
21.Sahin, F., Robinson EP., “Information sharing and coordination in make-to-order supply chains”, Journal of Operations Management,23, pp.579-598, 2005.
22.Sara, K., “On the benefits of CPFR and VMI: A comparative simulation study”, International Journal of Production Economics, 13, pp.575-586, 2008.
23.Schuster, E.W., Unahabhokha, C. and Allen, S.J., “Master Production Schedule Stability under conditions of finite capacity”, under review, Internation Journal of Production Research, 2002.
24.Seifert, D., “The CPFR Concept - The CPFR Value Proposition, Collaborative Planning, Forecasting and Replenishment - How to Create a Supply Chain Advantage”, 1st ed., Amacon, 27-41, 2003.
25.Silver, E., Pyke, D. and Peterson, R.(1998), “Inventory and production planning and scheduling”, 3rd ed, John Wiley, New York, USA.
26.Simchi-Levi, Kaminsky, “Designing and managing the supply chain: concepts, strategies and case studies” ,McGraw-Hill, 2007.
27.Tay, C.C., “How supply planning can contribute in reducing inventory and maintaining service level at 98% concurrently”, Cranfield University, 2007.
28.Water, D., “Inventory control and management”, 2nd ed, Wiley, 2003.
29.Whybark, D.C.,Williams, J.G., “Material requirements planning under uncertainty”, Decision Sciences, 7, pp. 595–606, 1976.
30.Zhou, B., Zhao, Y. and Katehakis, M.N., “Effective control policies for stochastic inventory systems with a minimum order quantity and linear costs”, International Journal of Production Economics, vol.106, pp 523-531, 2007.
31.Zhao, X.D., Xie, J.X., “Forecasting errors and the value of information sharing in a supply chain”, International Journal of Production Research, 40:2 ,pp.311-335,2002