簡易檢索 / 詳目顯示

研究生: 古永明
Yuan-Ming Gu
論文名稱: 半導體晶圓廠氣體偵測監控之電腦輔助訓練系統發展
Development of Computer-based Training system for Gas Detecting Control in the Fab of Semiconductor Company
指導教授: 黃雪玲
Sheue-Ling Hwang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 90
中文關鍵詞: 緊急監控中心氣體偵測系統電腦輔助訓練程式專家系統
外文關鍵詞: Gas detecting, Computer-based training, Emergency Response Center, Expert system
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 綠色矽島是政府多年來一直在推動的一項重大政策,也是至今仍然持續在進行成長具經濟競爭力的產業結構。諸多的進步意味著企業之組織與廠區軟硬體架構逐年複雜、龐大化,企業關心的焦點更加重視起人員、設備的安全與事故災害發生時的緊急應變能力,而其中監控人員的應變處理能力更是影響這一環最主要的因素。有鑑於此,吾人利用專家系統設計原理與圖形介面之應用發展一套監控人員訊息處理程式輔助訓練系統,期能提高人員監控績效,透過訓練軟體處理程式與邏輯判斷的專家化以及視覺化,消除新進人員的狀況陌生感,增進其處理狀況的能力,也經由狀況的模擬訓練使人員在短時間內獲得經驗的累積。
    發展之軟體為針對監控中心氣體偵測系統之人員處理程式輔助訓練系統達成以下三項目的,即軟體訓練標準化、知識專家化、加速新進人員學習效率。透過業界訪談知識的獲得與監控作業、專家系統、電腦輔助訓練等相關文獻的探討,利用C++Builder程式開發工具進行系統建構。研究方法分二階段實施,第一階段為系統瞭解與訓練介面改善預試評估,主要目的在瞭解電腦輔助訓練方式之可行性,由數據分析結果可明顯發現利用電腦輔助訓練之方式不管是在反應速度、處理訊息時間、避免錯誤動作、與有效擷取訊息上確實能改善工作績效,同時大幅訓練時間亦可縮短,支持了第二階段發展電腦輔助訓練系統的必要性。第二階段為圖式化專家輔助訓練系統原型之發展,先實際了解問題源搜索處理流程並說明實際應用之知識內容與規則邏輯的狀況處理原則,接著則依循原則設計電腦輔助訓練程式。完成訓練系統程式後進行實驗與評估,進一步評估程式訓練的實質效益。

    本研究所完成之電腦輔助訓練程式,利用電腦化、圖式化方式確實在緊急監控訓練上達成圖式化訓練提高學習績效。經由記錄訓練過程,可提供學習修正之依據。同時參考實例進行模擬,降低學習過程之不確定性、有效縮短訓練時間、訓練方式得以標準化等。文中並實際討論系統發展過程所遭遇之瓶頸,並將本訓練系統與現行文件訓練制度進行比較,最後提出相關後續研究方向。


    Traditional training programs can not supply semiconductor companies with capable Emergency Response Center (ERC) supervisors. The lack of experienced instructors and the complexity of training materials have put the system under the risks of wrong judgments and decisions making by under-trained workers. Via Computer-Based Training (CBT) system can be used to improve the workers’ learning effectiveness and efficiencies, its advantage can be fully explored only through appropriate training programs and well-designed interface screen, where the symbols and icons can be easily recognized and decoded by the potential trainees and its contents represent the necessary information of the real system.
    The objective of this research is to develop the Gas-Detecting training program that can support current training in ERC and evaluate the relationship between two forms of training materials and the performance of trainees. The training materials are classified into documented alphanumerical training materials, and computerized graphical training materials. Two stages research method were being preceded, feasibility study is the major purpose in the first stage, and development of the training program is the main work in the secondary stage.

    For the evaluation of the training program our subjects in this study are 16 engineering graduate students who have the potential to work as supervisors in ERC center. Subjects were randomly divided into two different groups. Self-developed computer program, which simulate the operation of Gas Detector Alarm Informing Procedure, is used as study tool to investigate the performance of trainees. Performance measurement indexes include trainees’ training time, response time, message processing time, number of errors and number of missing.

    The results of study indicate that Computer-Based Training material have significant effects on the trainees’ performance. The computerized graphical training materials require the least efforts and have the best performance than the current training way with manuals in the company. It is argued that in order to speed up the training process of the ERC trainee, the computerized graphical training materials are suggested. The results can be used to support the development of the training system for ERC personnel. Future study will focus on the development of ERC Decision making Computer-Based Training program and transform to E-learning type in the webpage.

    第一章 前言.............................................6 1.1 研究背景與動機........................................6 1.2 研究目的..............................................9 1.3 研究步驟..............................................9 第二章 文獻探討...........................................12 2.1 監控作業..............................................12 2.1.1 監控架構............................................12 2.1.2 監控作業之模組化....................................12 2.1.3 監控作業之設計方法...................................15 2.2 專家系統..............................................17 2.2.1 系統設計方法......................................20 2.2.2 系統評估...........................................23 2.3 電腦輔助訓練...........................................25 2.3.1 訓練方式...........................................25 2.3.2 設計原則............................................27 2.4 圖形介面設計............................................29 第三章 第一階段研究方法─氣體偵測操作訓練方式之改善.........32 3.1 氣體偵測系統介面與操作介紹...............................32 3.2 電腦圖形介面輔助訓練實驗................................37 3.2.1 受測人員.............................................38 3.2.2 實驗描述.............................................38 3.2.3 實驗變項.............................................41 3.2.4 實驗預試結果.........................................42 第四章 第二階段研究方法─電腦輔助訓練程式之設計.........47 4.1程式發展之知識參考依據.................................47 4.2 電腦輔助訓練程式之設計架構與操作介面介紹.................52 4.2.1 程式設計架構.................................52 4.2.2 前置訓練.............................54 4.2.3 整合訓練.............................................60 4.3程式開發環境....................................64 第五章 實驗分析與討論........................................67 5.1 受測人員........................................67 5.2 實驗描述........................................67 5.3 實驗變項........................................68 5.4 實驗結果........................................69 5.5 討論.............................................73 5.5.1 電腦輔助與傳統文件之訓練結果比較..............73 5.5.2實驗限制與系統發展瓶頸......................74 第六章 結論.......................................78 6.1研究結論............................................78 6.2後續研究方向.........................................79 參考文獻.....................................................81

    [1] Groumpos,P.P., and Stylios,C.D.;2000 ”Modelling supervisory control systems using fuzzy cognitive maps”, Chaos Solitons and Fractals 11 pp.329-336.
    [2] Saridis,G..;1989 “Analytic formulation of the principle of increasing precision with decreasing intelligence for intelligent machines”, Automatica25(3) pp.46-467.
    [3] Stylios,C.D., and Groumpos,P.P.;1998 “The challenge of modeling supervisory systems using fuzzy cognitive maps”, Journal of Intelligent Manufacturing9-4 pp.339-345.
    [4] Kosko,B.;1986 “Fuzzy cognitive maps”, International Journal of Man-Machine Studies24 pp.65-75.
    [5] Jeng,W.H., and Liang,G.R.;1998 “Reliable automated manufacturing system design based on SMT framework”, Computers in Industry 35 pp.121-147.
    [6] Stylios,C.D., and Groumpos,P.P.;1999 “Fuzzy Cognitive Maps: a model for intelligent supervisory control systems”, Computers in Industry 39 pp.229-238.
    [7] Johnson,C.W.;1996 “Integrating human factors and systems engineering to reduce the risk of operator error”, Safety Science 22 pp.195-214.
    [8] Su,Y.L., and Lin,D.Y.;1998 “The impact of expert-system-based training on calibration of decision confidence in emergency management”, Computers in human behavior 14 no.1 pp.181-194.
    [9] Trejo,L.J., and Kramer,A.F.; 1995 Josh A. Arnold, “Event-related potentials as indices of display-monitoring performance”, Biological Psychology 40 pp.33-71.
    [10] Theophilopoulos,N.A.; Efstathiadis,S.G.; and Petropoulos,Y.; 1996 “ENVISYS Environmental monitoring warning and emergency management system”, Spill Science & Technology Bulletin Vol.3 No.1/2 pp.19-24.
    [11] Guimaraes,T.; Yoon,Y.; and Clevenson,A. 1996 “Factors important to expert systems success-A field test”, Information & Management 30 pp.119-130.
    [12] Smith, D.L. ”Implementing real world expert systems”, AI expert Vol.3 No.2 pp.51-57.
    [13] Bailey, J.E. & Pearson, S.W.; 1999 “Development of a tool for Measuring and analyzing computer user satisfaction”, Managemenjt Science Vol.29 No.5 pp.530-545.
    [14] Debenham, J.K.; 1996 “Knowledge engineering: The essential skills”, Expert System for Management and Engineering, Ellis Horwood, New York, NY, pp.36-66.
    [15] Payne,S.C., and Awad,E.M.; 1997 “The system analyst as a knowledge engineer: Can the transition be successfully made?”, Proceeding of …. October, pp.115-169.
    [16] Su,Y.L.; 1998 “The impact of expert-system-based training on calibration of decision confidence in emergency management”, Computer in Human Behavior Vol.14 No.1 pp.181-194.
    [17] Chen,J.G.; Fisher,D.J.; and Krishnamurthy,K.; 1995 “Development of a computerized system for fall accident analysis and prevention”, Computer ind. Engng. Vol.28 No.3 pp.457-466.
    [18] Gramopadhye,A.; Bhagwat,S.; Kimbler,D.; and Greenstein,J.; 1998 “The use of advanced technology for visual inspection training”, Applied Ergonomics Vol. 29 No.5 pp.361-375.
    [19] Berthelette,D.; 1996 “Evaluation of ergonomic training programs”, Safety Science, Vol.23 No.2/3 pp.133-143.
    [20] Chang,C.H., and Chen,Y.; 1995 “A study of multimedia applications in education and training ”, Computers ind. Engng Vol..29 No1-4 pp.103-107
    [21] ISO 9241 Ergonomics Requirements for Office Work with Visual Display Terminals, 1992, Part7-12, Display requirements with reflections, Requirements for displayed colures, Requirements for non-keyboard input devices, Dialogue principles,

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE