研究生: |
黃羿禎 Huang, Yizhen |
---|---|
論文名稱: |
開發具骨誘導/骨引導功能之骨粉作為骨組織工程 Development of Osteoinductive/Osteoconductive Bone Graft for Bone Tissue Engineering |
指導教授: |
魯才德
Lu, Tsai-Te |
口試委員: |
張士灝
Chang, Shih-Hao 蕭慧怡 Hsiao, Hui-Yi |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 生物醫學工程研究所 Institute of Biomedical Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 93 |
中文關鍵詞: | 骨誘導 、骨引導 、雙亞硝基鐵錯合物 、一氧化氮 、細胞增生 、骨粉 |
外文關鍵詞: | osteoinductive, osteoconductive, dinitrosyl iron complexes, nitric oxide, proliferation, bone graft |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了使骨修復能達到更快的效率,大多數研究都著重於骨替代材料的開發,而本研究工作將以臨床上使用的骨材:Bio-oss (百歐士)、Cerasorb (強骨生) 及SinboneHT (生骨),修飾上可運送一氧化氮的雙亞硝基鐵錯合物:以幫助骨缺損處的修復。本研究首先開發及合成不同雙亞硝基鐵錯合物 [Fe2(μ-SEtOH)2(NO)4]、[Fe2(μ-SEtCOOH)2(NO)4]、[Fe2(μ-MPTMS)2(NO)4]、[(DTA)Fe(NO)2] 及 [(DTATMS)Fe(NO)2],輔以紅外線光譜儀進行鑑定。進一步利用老鼠造骨細胞 MC3T3-E1,搭配 CCK-8/WST-1 assay,用以探討雙亞硝基鐵錯合物是否是否可藉由釋放一氧化氮,促進造骨細胞的增生。目前實驗結果得知,在造骨細胞存活度的測試中,雙亞硝基鐵錯合物 [Fe2(μ-SEtOH)2(NO)4]、[Fe2(μ-SEtCOOH)2(NO)4] 及 [Fe2(μ-MPTMS)2(NO)4]具最好的增生效果。在進行骨粉修飾前,先以掃描式電子顯微鏡、粉末X光繞射儀、霍氏轉換紅外光儀、紫外光-可見光光譜儀及熱重分析儀,探討不同種類骨粉的形貌、孔洞性、結晶性、表面官能基及熱穩定性等。接著,以後修飾的合成策略,嘗試將雙亞硝基鐵錯合物鑲嵌於骨粉中,並利用紅外線光譜儀判斷雙亞硝基鐵錯合物的後修飾。在此實驗中可發現,Bio-oss 的可修飾性為三種骨粉中最好,可進一步修飾上雙亞硝基鐵錯合物 [Fe2(μ-SEtCOOH)2(NO)4] 及 [Fe2(μ-MPTMS)2(NO)4];Cerasorb 則次之,僅可修飾上雙亞硝基鐵錯合物 [Fe2(μ-SEtCOOH)2(NO)4]。由此亦可發現,具羧酸根的 [Fe2(μ-SetCOOH)2(NO)4] 修飾效果最好。接著,將這三種修飾後的骨粉做雙亞硝基鐵錯合物及一氧化氮釋放之測試,發現[Fe2(μ-SEtCOOH)2(NO)4]@Bio-oss釋放速率最快,[Fe2(μ-SEtCOOH)2(NO)4]@Cerasorb則為緩慢釋放,而培養基中的胎牛血清亦增加雙亞硝基鐵錯合物及一氧化氮釋放的量。而釋放後的骨粉仍保有原先晶體結構。
A variety of bone graft materials were developed in order to enhance and accelerate the repair process under bone defect. In this study, we modify the clinical used bone graft, such as Bio-Oss and Cerasorb, with ‧NO-delivery dinitrosyl iron complexes (DNICs) to induce a osteoinductive and osteoconductive effect and to further strengthen the bone repair. First, we synthesized DNICs [Fe2(-SEtOH)2(NO)4] (1), [Fe2(-SEtCOOH)2(NO)4] (2), [Fe2(-MPTMS)2(NO)4] (3) (MPTMS = 3-mercaptopropyl)trimethoxysilane), [(DTA)Fe(NO)2] (4) (DTA = diethylenetriamine) and [(DTATMS)Fe(NO)2] (5) (DTATMS = 3-trimethoxysilylpropyl)diethylenetriamine) characterized by IR spectroscopy. According to the cell viability study of DNICs using CCK-8 assay, DNICs 1-3 promote the proliferation of murine osteoblast, MC3T3-E1. Before modification of bone graft, composition, morphology, porosity and crystallinity of Bio-Oss and Cerasorb, respectively, were characterized by IR, SEM, power XRD. Among these bone graft materials, Cerasorb features the best crystallinity. In the attempt to modify bone graft materials, the carboxylic acid functional group is critical to facilitate the successful incorporation of DNIC 2 into Bio-Oss and Cerasorb, as opposed to other attempted combination. Moreover, DNIC 2@Bio-Oss releases DNIC and nitric oxide rapidly, and DNIC 2@Cerasorb releases DNIC and nitric oxide slowly. In the future, we will investigate the in vitro ‧NO-release reactivity and in vivo proangiogenic/osteoinductive effect of [Fe(NO)2]:Bio-Oss and [Fe(NO)2]:Cerasorb for the repair of bone defect.
1. William F. Ganong, C.T.R., Ganong Wf, Review of Medical Physiology (22nd Edition). 2005.
2. Buckwalter, J.A., et al., Bone biology. II: Formation, form, modeling, remodeling, and regulation of cell function. Instr Course Lect, 1996. 45: p. 387-99.
3. Hench, L.L. and J.M. Polak, Third-generation biomedical materials. Science, 2002. 295(5557): p. 1014-7.
4. Navarro, M., et al., Biomaterials in orthopaedics. J R Soc Interface, 2008. 5(27): p. 1137-58.
5. Nabiyouni, M., et al., Magnesium-based bioceramics in orthopedic applications. Acta Biomater, 2018. 66: p. 23-43.
6. Orsini, G., et al., Maxillary sinus augmentation with Bio-Oss particles: a light, scanning, and transmission electron microscopy study in man. J Biomed Mater Res B Appl Biomater, 2005. 74(1): p. 448-57.
7. 衛署醫器製字第001952號,編號 DHY00500195203.
8. Szabo, G., et al., A prospective multicenter randomized clinical trial of autogenous bone versus beta-tricalcium phosphate graft alone for bilateral sinus elevation: histologic and histomorphometric evaluation. Int J Oral Maxillofac Implants, 2005. 20(3): p. 371-81.
9. Furchgott, R.F. and J.V. Zawadzki, The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature, 1980. 288(5789): p. 373-6.
10. Palmer, R.M., A.G. Ferrige, and S. Moncada, Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature, 1987. 327(6122): p. 524-6.
11. Ignarro, L.J., et al., Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci U S A, 1987. 84(24): p. 9265-9.
12. Koshland, D.E., Jr., The molecule of the year. Science, 1992. 258(5090): p. 1861.
13. McIntyre, M. and A.F. Dominiczak, Nitric oxide and cardiovascular disease. Postgrad Med J, 1997. 73(864): p. 630-4.
14. Esplugues, J.V., NO as a signalling molecule in the nervous system. Br J Pharmacol, 2002. 135(5): p. 1079-95.
15. Wallace, J.L., Nitric oxide as a regulator of inflammatory processes. Mem Inst Oswaldo Cruz, 2005. 100 Suppl 1: p. 5-9.
16. Koch, A.E., Review: angiogenesis: implications for rheumatoid arthritis. Arthritis Rheum, 1998. 41(6): p. 951-62.
17. Ying, L. and L.J. Hofseth, An emerging role for endothelial nitric oxide synthase in chronic inflammation and cancer. Cancer Res, 2007. 67(4): p. 1407-10.
18. van't Hof, R.J. and S.H. Ralston, Nitric oxide and bone. Immunology, 2001. 103(3): p. 255-61.
19. Roberts, J.D., et al., Inhaled nitric oxide in persistent pulmonary hypertension of the newborn. Lancet, 1992. 340(8823): p. 818-9.
20. Kerwin, J.F., Jr. and M. Heller, The arginine-nitric oxide pathway: a target for new drugs. Med Res Rev, 1994. 14(1): p. 23-74.
21. Miller, M.R. and I.L. Megson, Recent developments in nitric oxide donor drugs. Br J Pharmacol, 2007. 151(3): p. 305-21.
22. Huerta, S., S. Chilka, and B. Bonavida, Nitric oxide donors: novel cancer therapeutics (review). Int J Oncol, 2008. 33(5): p. 909-27.
23. Hubert Sanderson Tasker, H.O.J., CCXII.—The action of mercaptans on acid chlorides. Part II. The acid chlorides of phosphorus, sulphur, and nitrogen. Journal of the chemical society, transactions, 1909. 95, 1909.
24. Peng, Y.J., et al., Reaction Mechanism of 3,4-Dinitrofuroxan Formation from Glyoxime: Dehydrogenation and Cyclization of Oxime. Chemphyschem, 2016. 17(4): p. 541-7.
25. Huang, L.Y., et al., The furoxan nitric oxide donor, PRG150, evokes dose-dependent analgesia in a rat model of painful diabetic neuropathy. Clin Exp Pharmacol Physiol, 2015. 42(9): p. 921-929.
26. Kato, H.H., M.; Ohta, M. Nippon Kagaku Zasshi. , J. Chem. Soc. Jpn., 1957. 78-5: p. 707.
27. WALKE, P.B.a.J., Formation and Properties of Sydrume Imines, a New Class of Meso-ionic Compound, and Some Sydwnes Related to Na;tural a-Amino-acids. . Journal of the Chemical Society 1957(0).
28. Wang, P.G., et al., Nitric oxide donors: chemical activities and biological applications. Chem Rev, 2002. 102(4): p. 1091-134.
29. Hino, M., et al., FK409, a novel vasodilator isolated from the acid-treated fermentation broth of Streptomyces griseosporeus. I. Taxonomy, fermentation, isolation, and physico-chemical and biological characteristics. J Antibiot (Tokyo), 1989. 42(11): p. 1578-83.
30. Drago, R.S. and F.E. Paulik, The Reaction of Nitrogen(II) Oxide with Diethylamine. Journal of the American Chemical Society, 1960. 82(1): p. 96-98.
31. Maragos, C.M., et al., Complexes of .NO with nucleophiles as agents for the controlled biological release of nitric oxide. Vasorelaxant effects. Journal of Medicinal Chemistry, 1991. 34(11): p. 3242-3247.
32. Sanina, N.A., et al., Synthesis, structure, NO-donor and redox activity of bis-(2-methylfuranethiolate)tetranitrosyl diiron. Journal of Molecular Structure, 2014. 1075: p. 159-165.
33. Monti, M., et al., Anti-hypertensive property of a nickel-piperazine/NO donor in spontaneously hypertensive rats. Pharmacol Res, 2016. 107: p. 352-359.
34. Castro, P.F., et al., Relaxing effect of a new ruthenium complex nitric oxide donor on airway smooth muscle of an experimental model of asthma in rats. Clin Exp Pharmacol Physiol, 2016. 43(2): p. 221-9.
35. Sakhaei, Z., et al., Nitric oxide release via oxygen atom transfer from nitrite at copper(ii). Chem Commun (Camb), 2017. 53(3): p. 549-552.
36. Lewandowska, H., et al., Crucial role of lysosomal iron in the formation of dinitrosyl iron complexes in vivo. J Biol Inorg Chem, 2007. 12(3): p. 345-52.
37. Enemark, J.H. and R.D. Feltham, Principles of structure, bonding, and reactivity for metal nitrosyl complexes. Coordination Chemistry Reviews, 1974. 13(4): p. 339-406.
38. Lee, M., et al., Identification of the EPR-Active Iron-Nitrosyl Complexes in Mammalian Ferritins. Biochemistry, 1994. 33(12): p. 3679-3687.
39. Nakanishi, K., et al., Lipophilic ruthenium salen complexes: incorporation into liposome bilayers and photoinduced release of nitric oxide. Dalton Trans, 2015. 44(32): p. 14200-3.
40. Song, Q., et al., Nitric oxide releasing d-alpha-tocopheryl polyethylene glycol succinate for enhancing antitumor activity of doxorubicin. Mol Pharm, 2014. 11(11): p. 4118-29.
41. Worley, B.V., D.L. Slomberg, and M.H. Schoenfisch, Nitric Oxide-Releasing Quaternary Ammonium-Modified Poly(amidoamine) Dendrimers as Dual Action Antibacterial Agents. Bioconjugate Chemistry, 2014. 25(5): p. 918-927.
42. Lu, Y., et al., Nitric oxide-releasing amphiphilic poly(amidoamine) (PAMAM) dendrimers as antibacterial agents. Biomacromolecules, 2013. 14(10): p. 3589-98.
43. Slomberg, D.L., et al., Role of size and shape on biofilm eradication for nitric oxide-releasing silica nanoparticles. ACS Appl Mater Interfaces, 2013. 5(19): p. 9322-9.
44. Lautner, G., M.E. Meyerhoff, and S.P. Schwendeman, Biodegradable poly(lactic-co-glycolic acid) microspheres loaded with S-nitroso-N-acetyl-D-penicillamine for controlled nitric oxide delivery. J Control Release, 2016. 225: p. 133-9.
45. Diring, S., et al., Localized cell stimulation by nitric oxide using a photoactive porous coordination polymer platform. Nat Commun, 2013. 4: p. 2684.
46. Mancini, L., et al., The biphasic effects of nitric oxide in primary rat osteoblasts are cGMP dependent. Biochem Biophys Res Commun, 2000. 274(2): p. 477-81.
47. Kalyanaraman, H., N. Schall, and R.B. Pilz, Nitric oxide and cyclic GMP functions in bone. Nitric Oxide, 2018. 76: p. 62-70.
48. Otsuka, E., et al., Effects of nitric oxide from exogenous nitric oxide donors on osteoblastic metabolism. Eur J Pharmacol, 1998. 349(2-3): p. 345-50.