簡易檢索 / 詳目顯示

研究生: 蔡潔儀
Tsai, Chieh-Yi
論文名稱: 兩階段式治療對於皮膚再生的影響
Effects of two-stage treatments on skin regeneration
指導教授: 陳盈潔
Chen, Ying-Chieh
口試委員: 王子威
Wang, Tzu-Wei
黃琇珍
Huang, Hsiu-Chen
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 90
中文關鍵詞: 傷口癒合明膠光交聯
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 傷口癒合的天然支架需具有可調機械性質和優良的生物相容性,在研究中,生物工程皮膚敷料,如海綿和膜,不能滿足傷口的幾何形狀,並提供濕潤,我們通過不同成膠溫度及曝光時間控制交聯程度,製造出具有可調的機械性能、微觀結構、交聯程度和降解速率的甲基丙烯酸酰基明膠 (Gelatin-methacryloyl (GelMA)) 水凝膠,透過不同交聯程度形成具有不同微結構的GelMA水凝膠,填入小鼠傷口中進行一階段治療,或是利用親水性水膠體敷料Duoderm(Positive control,PC)治療3天後,再放上GelMA,包裹間葉系幹細胞(mesenchymal stem cells,MSCs)的GelMA,或是同時包裹人臍靜脈內皮細胞(Human umbilical endothelial cells, HUVECs) 及間葉系幹細胞(mesenchymal stem cells,MSCs),進行兩階段治療,28天後取下傷口,分析傷口部位上皮層、毛囊(真皮)層、皮下的脂肪層及肌肉層的覆蓋率,以及真皮層和肉芽組織厚度,探討不同水凝膠療法對皮膚再生的影響,探討血管新生對皮膚再生的影響;透過材料特性的機械性質、降解速率、微結構、水蒸發速率、膨潤比,比較對傷口癒合的影響,實驗結果顯示出要完整的再生無疤痕皮膚,需選用有較慢降解速率的水凝膠搭配人臍靜脈內皮細胞及間葉系幹細胞進行兩階段治療。透過這些探討,我們可以有效將水凝膠的物理化學特性應用在不同的材料系統上,未來可根據不同受傷程度的傷口需求而精準地控制皮膚的再生。


    Engineering natural scaffolds with tunable mechanical properties, suitable biodegradation and great biocompatibility is highly desirable for wound healing. In previous study, bioengineering skin substitutes, like sponge and membrane, can’t totally cover the geometries of the wound and provide the wet physiological environment. In this study, we developed sequentially-crosslinked methacrylated GelMA hydrogels with tunable mechanical properties, degradation and microstructure by controlling molecules assembles, crosslinking degrees and crosslinked sites. GelMA hydrogels with different microstructures formed by different crosslinked sites and temperatures were filled into wounds for one-stage treatment, or treated with hydrophilic hydrocolloid dressing Duoderm (Positive control, PC) for 3 days, then put on GelMA, which encapsulated mesenchymal stem cells (MSCs), or simultaneously encapsulated human umbilical endothelial cells (HUVECs) and MSCs for two-stage treatment. After 28 days, the coverage of the epithelial layer, hair follicle (dermis) layer, subcutaneous fat layer and muscle layer of the wound site, as well as the thickness of the dermis layer and granulation tissuewere calculated to understand the effects of GelMA hydrogels with various conditions and therapies on skin regeneration. To understand how to regnerate the scar-free skin, the histological examination were performed after 7 days of treatment. The effects of mechanical properties, degradation rate, microstructure, water evaporation rate, swelling ratio of GelMA hydrogels were discussed. To completely regenerate scar-free skin, the hydrogel with a slower rate of degradation encapsulated HUVECs and MSCs were used in the two stages treatment. Through turning physico-chemical properties of GelMA hydrogels, we could presicely and effectively regenerate scar-free skin for various wounds.

    目錄 一 、緒論 1 1.1 皮膚結構 1 1.2 傷口種類 2 1.3 傷口癒合三步驟 2 1.3.1 炎症期 2 1.3.2 增殖期 3 1.3.3 重塑 3 1.4 慢性傷口的臨床和經濟意義(目前臨床上的需求) 4 1.5 傷口癒合現況與遇到的瓶頸 4 1.6 本研究的動機及目標 8 二 、文獻回顧 9 2.1 學術上傷口敷料應用 9 2.2 明膠的結構與特性 11 2.2.1 臨床與研究上所使用的明膠 12 2.2.2 明膠及GelMA在傷口癒合的研究 13 2.3 細胞激素對傷口癒合的影響 16 2.3.1 條件培養基(conditioned medium,CM)於傷口癒合的功用 16 2.3.2 植入細胞於傷口癒合的成效 17 三 、材料和實驗方法 19 3.1 GelMA的合成 19 3.2 紫外光源和強度 19 3.3 明膠改質前後的圓二色光譜分析 20 3.4 光交聯形成GelMA水凝膠的方法 20 3.5 GelMA水凝膠的機械性質 20 3.6 GelMA水凝膠體外降解 21 3.7 GelMA水凝膠的表面形貌 21 3.8 GelMA水凝膠水蒸氣蒸發速率 21 3.9 GelMA水凝膠膨脹率 22 3.10 水凝膠的鎖水功能測試 22 3.11 細胞來源及培養 23 3.12 UV和光引發劑(Irgacure 2959)毒性測試 23 3.13 GelMA水凝膠3D細胞培養 24 3.14 GelMA水凝膠3D中細胞染色 24 3.15 濃縮條件培養基(conditioned medium,CM) 24 3.16 傷口癒合應用 25 3.16.1 動物傷口模型建立 25 3.16.2 傷口面積 27 3.16.3 水凝膠製作 27 3.17 組織學分析 28 3.18 統計分析 29 四 、結果 30 材料特性分析 30 4.1 GelMA三股螺旋的生成以及機械性質 30 4.2 GelMA水凝膠吸水能力 32 4.3 探討GelMA水凝膠的微結構及降解 34 4.4 GelMA水凝膠的透明度、鎖水程度與水蒸發速率(water vapor transmission rates ,(WVTR)) 37 4.5 細胞毒性評估 39 4.6 細胞在GelMA水凝膠中的行為表現 41 4.7 C57BL巨觀傷口面積計算 43 4.8 C57BL小鼠傷口切片統計 47 4.9 免疫缺乏鼠巨觀傷口面積計算 52 4.10 免疫缺乏鼠切片統計 55 4.11 免疫缺乏鼠促進皮膚再生的機制探討 60 五 討論 64 六 結論 73 七 參考文獻 75

    七 參考文獻
    1. Proksch, E., et al., The skin: an indispensable barrier. Experimental dermatology, 2008. 17(12): p. 1063-1072.
    2. Ayers-Ringler, J., et al., Histologic and Biomolecular Similarities in Healing between Aneurysms and Cutaneous Skin Wounds. American Journal of Neuroradiology, 2019.
    3. Singer, A.J., et al., Cutaneous wound healing. New England journal of medicine, 1999. 341(10): p. 738-746.
    4. Gil, E.S., et al., Functionalized silk biomaterials for wound healing. Advanced healthcare materials, 2013. 2(1): p. 206-217.
    5. Wright, J.A., et al., The role of iron in the skin and cutaneous wound healing. Frontiers in pharmacology, 2014. 5: p. 156.
    6. Porter, S., The role of the fibroblast in wound contraction and healing. WOUNDS UK, 2007. 3(1): p. 33.
    7. Greaves, N.S., et al., Current understanding of molecular and cellular mechanisms in fibroplasia and angiogenesis during acute wound healing. Journal of dermatological science, 2013. 72(3): p. 206-217.
    8. Johnson, N.R., et al., Controlled delivery of heparin-binding EGF-like growth factor yields fast and comprehensive wound healing. Journal of Controlled Release, 2013. 166(2): p. 124-129.
    9. Baum, C.L., et al., Normal cutaneous wound healing: clinical correlation with cellular and molecular events. Dermatologic surgery, 2005. 31(6): p. 674-686.
    10. Opalenik, S.R., et al., Fibroblast differentiation of bone marrow-derived cells during wound repair. The FASEB Journal, 2005. 19(11): p. 1561-1563.
    11. Falanga, V., Wound healing and its impairment in the diabetic foot. The Lancet, 2005. 366(9498): p. 1736-1743.
    12. Aparecida Da Silva, A., et al., Wound-healing effects of low-level laser therapy in diabetic rats involve the modulation of MMP-2 and MMP-9 and the redistribution of collagen types I and III. Journal of Cosmetic and Laser Therapy, 2013. 15(4): p. 210-216.
    13. Zielins, E.R., et al., Wound healing: an update. Regenerative medicine, 2014. 9(6): p. 817-830.
    14. Gurtner, G.C., et al., Wound repair and regeneration. Nature, 2008. 453(7193): p. 314.
    15. Witte, M.B., et al., General principles of wound healing. Surgical Clinics of North America, 1997. 77(3): p. 509-528.
    16. Sen, C.K., et al., Human skin wounds: a major and snowballing threat to public health and the economy. Wound repair and regeneration, 2009. 17(6): p. 763-771.
    17. Veith, A.P., et al., Therapeutic strategies for enhancing angiogenesis in wound healing. Advanced drug delivery reviews, 2018.
    18. Park, N.J., et al., Updating on understanding and managing chronic wound. Dermatologic therapy, 2013. 26(3): p. 236-256.
    19. Boateng, J., et al., Advanced therapeutic dressings for effective wound healing—a review. Journal of pharmaceutical sciences, 2015. 104(11): p. 3653-3680.
    20. Guest, J.F., et al., Health economic burden that different wound types impose on the UK's National Health Service. International wound journal, 2017. 14(2): p. 322-330.
    21. Chan, B., et al., Cost-of-illness studies in chronic ulcers: a systematic review. Journal of wound care, 2017. 26(Sup4): p. S4-S14.
    22. Diligence, M., Wound Management, Forecast 2016 to 2026. MedMarket Diligence, 2018.
    23. Sood, A., et al., Wound dressings and comparative effectiveness data. Advances in wound care, 2014. 3(8): p. 511-529.
    24. Debra, J., et al., Wound healing: Technological innovations and market overview. Technology Catalysts International Corporation, 1998. 2: p. 1-185.
    25. Boateng, J.S., et al., Wound healing dressings and drug delivery systems: a review. Journal of pharmaceutical sciences, 2008. 97(8): p. 2892-2923.
    26. Lee, S.M., et al., Physical, morphological, and wound healing properties of a polyurethane foam-film dressing. Biomaterials research, 2016. 20(1): p. 15.
    27. Motta, G., Calcium alginate topical wound dressings: a new dimension in the cost-effective treatment for exudating dermal wounds and pressure sores. Ostomy/wound management, 1989. 25: p. 52-56.
    28. Thomas, A., et al., Alginates from wound dressings activate human macrophages to secrete tumour necrosis factor-α. Biomaterials, 2000. 21(17): p. 1797-1802.
    29. Nemeth, A.J., et al., Faster healing and less pain in skin biopsy sites treated with an occlusive dressing. Archives of dermatology, 1991. 127(11): p. 1679-1683.
    30. Heffernan, A., et al., A comparison of a modified form of Granuflex (Granuflex Extra Thin) and a conventional dressing in the management of lacerations, abrasions and minor operation wounds in an accident and emergency department. Emergency Medicine Journal, 1994. 11(4): p. 227-230.
    31. Thomas, S., A comparative study of the properties of twelve hydrocolloid dressings. World Wide Wounds, 1997.
    32. Martin, L., et al., The release of model macromolecules may be controlled by the hydrophobicity of palmitoyl glycol chitosan hydrogels. Journal of controlled release, 2002. 80(1-3): p. 87-100.
    33. Deng, W., et al., Absorptive supramolecular elastomer wound dressing based on polydimethylsiloxane–(polyethylene glycol)–polydimethylsiloxane copolymer: preparation and characterization. RSC Advances, 2016. 6(57): p. 51694-51702.
    34. Lee, J.W., et al., Evaluation of a polyurethane foam dressing impregnated with 3% povidone-iodine (Betafoam) in a rat wound model. Annals of surgical treatment and research, 2018. 94(1): p. 1-7.
    35. Murakami, K., et al., Hydrogel blends of chitin/chitosan, fucoidan and alginate as healing-impaired wound dressings. Biomaterials, 2010. 31(1): p. 83-90.
    36. Zhu, Y., et al., One-step synthesis of an antibacterial and pro-healing wound dressing that can treat wound infections. Journal of Materials Chemistry B, 2017. 5(43): p. 8451-8458.
    37. Rahnama, M., Wound healing potential of copper (II) bis [n'-(5-chloro-1hindol-3-yl) methyl nicotinic hydrazide] on experimentally induced excision wounds in rats. 2013, University of Malaya.
    38. Chen, H., et al., An injectable self-healing coordinative hydrogel with antibacterial and angiogenic properties for diabetic skin wound repair. NPG Asia Materials, 2019. 11(1): p. 3.
    39. Sun, G., et al., Dextran hydrogel scaffolds enhance angiogenic responses and promote complete skin regeneration during burn wound healing. Proceedings of the National Academy of Sciences, 2011. 108(52): p. 20976-20981.
    40. El Sadik, A.O., et al., The effect of mesenchymal stem cells and chitosan gel on full thickness skin wound healing in albino rats: histological, immunohistochemical and fluorescent study. PloS one, 2015. 10(9): p. e0137544.
    41. Parenteau-Bareil, R., et al., Collagen-based biomaterials for tissue engineering applications. Materials, 2010. 3(3): p. 1863-1887.
    42. Pataridis, S., et al., Determination and quantification of collagen types in tissues using HPLC-MS/MS. Current analytical chemistry, 2009. 5(4): p. 316-323.
    43. Sreejit, P., et al., An improved protocol for primary culture of cardiomyocyte from neonatal mice. In Vitro Cellular & Developmental Biology-Animal, 2008. 44(3-4): p. 45-50.
    44. Chen, H., et al., Quickly promoting angiogenesis by using a DFO-loaded photo-crosslinked gelatin hydrogel for diabetic skin regeneration. Journal of Materials Chemistry B, 2016. 4(21): p. 3770-3781.
    45. Ahsan, S.M., et al., Structural studies on aqueous gelatin solutions: Implications in designing a thermo-responsive nanoparticulate formulation. International journal of biological macromolecules, 2017. 95: p. 1126-1134.
    46. Reddy, N., et al., Crosslinking biopolymers for biomedical applications. Trends in biotechnology, 2015. 33(6): p. 362-369.
    47. Lee, K.Y., et al., Hydrogels for tissue engineering. Chemical reviews, 2001. 101(7): p. 1869-1880.
    48. Kuijpers, A., et al., Characterization of the network structure of carbodiimide cross-linked gelatin gels. Macromolecules, 1999. 32(10): p. 3325-3333.
    49. Choi, Y.S., et al., Studies on gelatin‐containing artificial skin: II. Preparation and characterization of cross‐linked gelatin‐hyaluronate sponge. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 1999. 48(5): p. 631-639.
    50. Drury, J.L., et al., Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials, 2003. 24(24): p. 4337-4351.
    51. Crescenzi, V., et al., New gelatin-based hydrogels via enzymatic networking. Biomacromolecules, 2002. 3(6): p. 1384-1391.
    52. Broderick, E.P., et al., Enzymatic stabilization of gelatin‐based scaffolds. Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 2005. 72(1): p. 37-42.
    53. Van Den Bulcke, A.I., et al., Structural and rheological properties of methacrylamide modified gelatin hydrogels. Biomacromolecules, 2000. 1(1): p. 31-38.
    54. Hutson, C.B., et al., Synthesis and characterization of tunable poly (ethylene glycol): gelatin methacrylate composite hydrogels. Tissue Engineering Part A, 2011. 17(13-14): p. 1713-1723.
    55. Nichol, J.W., et al., Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials, 2010. 31(21): p. 5536-5544.
    56. Aldana, A.A., et al., Temperature-sensitive biocompatible IPN hydrogels based on poly (NIPA-PEGdma) and photocrosslinkable gelatin methacrylate. Soft Materials, 2017. 15(4): p. 341-349.
    57. Kim, J.W., et al., Fabrication of bi-layer scaffold of keratin nanofiber and gelatin-methacrylate hydrogel: implications for skin graft. International journal of biological macromolecules, 2017. 105: p. 541-548.
    58. Wu, Y., et al., The influence of the stiffness of GelMA substrate on the outgrowth of PC12 cells. Bioscience reports, 2019. 39(1): p. BSR20181748.
    59. Bertassoni, L.E., et al., Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels. Biofabrication, 2014. 6(2).
    60. Aldana, A.A., et al., Fabrication of Gelatin Methacrylate (GelMA) Scaffolds with Nano-and Micro-Topographical and Morphological Features. Nanomaterials, 2019. 9(1): p. 120.
    61. Rosellini, E., et al., Preparation and characterization of alginate/gelatin blend films for cardiac tissue engineering. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 2009. 91(2): p. 447-453.
    62. Galis, Z.S., et al., Matrix metalloproteinases in vascular remodeling and atherogenesis: the good, the bad, and the ugly. Circulation research, 2002. 90(3): p. 251-262.
    63. Yeo, Y., et al., Photocrosslinkable hydrogel for myocyte cell culture and injection. Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 2007. 81(2): p. 312-322.
    64. Ruoslahti, E., RGD and other recognition sequences for integrins. Annual review of cell and developmental biology, 1996. 12(1): p. 697-715.
    65. Kraehenbuehl, T.P., et al., Three-dimensional extracellular matrix-directed cardioprogenitor differentiation: systematic modulation of a synthetic cell-responsive PEG-hydrogel. Biomaterials, 2008. 29(18): p. 2757-2766.
    66. Yue, K., et al., Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials, 2015. 73: p. 254-271.
    67. Bertassoni, L.E., et al., Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab on a Chip, 2014. 14(13): p. 2202-2211.
    68. Jia, W., et al., Direct 3D bioprinting of perfusable vascular constructs using a blend bioink. Biomaterials, 2016. 106: p. 58-68.
    69. Yoon, H.J., et al., Cold water fish gelatin methacryloyl hydrogel for tissue engineering application. PloS one, 2016. 11(10): p. e0163902.
    70. Tan, G., et al., Biomimetically-mineralized composite coatings on titanium functionalized with gelatin methacrylate hydrogels. Applied Surface Science, 2013. 279: p. 293-299.
    71. Levett, P.A., et al., A biomimetic extracellular matrix for cartilage tissue engineering centered on photocurable gelatin, hyaluronic acid and chondroitin sulfate. Acta biomaterialia, 2014. 10(1): p. 214-223.
    72. Chen, Y.C., et al., Functional human vascular network generated in photocrosslinkable gelatin methacrylate hydrogels. Advanced functional materials, 2012. 22(10): p. 2027-2039.
    73. Nikkhah, M., et al., Directed endothelial cell morphogenesis in micropatterned gelatin methacrylate hydrogels. Biomaterials, 2012. 33(35): p. 9009-9018.
    74. Shin, S.R., et al., Cell‐laden microengineered and mechanically tunable hybrid hydrogels of gelatin and graphene oxide. Advanced materials, 2013. 25(44): p. 6385-6391.
    75. Kazemzadeh-Narbat, M., et al., Surgical sealants and high strength adhesives. 2015.
    76. Xu, K., et al., Thiol-ene Michael-type formation of gelatin/poly (ethylene glycol) biomatrices for three-dimensional mesenchymal stromal/stem cell administration to cutaneous wounds. Acta biomaterialia, 2013. 9(11): p. 8802-8814.
    77. Zhao, X., et al., Cell infiltrative hydrogel fibrous scaffolds for accelerated wound healing. Acta Biomaterialia, 2017. 49: p. 66-77.
    78. Chen, H., et al., Quickly promoting angiogenesis by using a DFO-loaded photo-crosslinked gelatin hydrogel for diabetic skin regeneration. Journal of Materials Chemistry B, 2016. 4(21): p. 3770-3781.
    79. Caplan, A.I., et al., Mesenchymal stem cells as trophic mediators. Journal of cellular biochemistry, 2006. 98(5): p. 1076-1084.
    80. Caplan, A.I., Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. Journal of cellular physiology, 2007. 213(2): p. 341-347.
    81. Kim, H.O., et al., Mesenchymal stem cell-derived secretome and microvesicles as a cell-free therapeutics for neurodegenerative disorders. Tissue Engineering and Regenerative Medicine, 2013. 10(3): p. 93-101.
    82. Rani, S., et al., The Exosome‐A Naturally Secreted Nanoparticle and its Application to Wound Healing. Advanced materials, 2016. 28(27): p. 5542-5552.
    83. Kourembanas, S., Exosomes: vehicles of intercellular signaling, biomarkers, and vectors of cell therapy. Annual review of physiology, 2015. 77: p. 13-27.
    84. Phinney, D.G., et al., Concise review: MSC‐derived exosomes for cell‐free therapy. Stem cells, 2017. 35(4): p. 851-858.
    85. Cobo, F., et al., Microbiological contamination in stem cell cultures. Cell biology international, 2007. 31(9): p. 991-995.
    86. Timmers, L., et al., Reduction of myocardial infarct size by human mesenchymal stem cell conditioned medium. Stem cell research, 2008. 1(2): p. 129-137.
    87. Van Poll, D., et al., Mesenchymal stem cell–derived molecules directly modulate hepatocellular death and regeneration in vitro and in vivo. Hepatology, 2008. 47(5): p. 1634-1643.
    88. Hocking, A.M., et al., Mesenchymal stem cells: paracrine signaling and differentiation during cutaneous wound repair. Experimental cell research, 2010. 316(14): p. 2213-2219.
    89. Badiavas, E.V., et al., Treatment of chronic wounds with bone marrow–derived cells. Archives of dermatology, 2003. 139(4): p. 510-516.
    90. Hur, W., et al., Regeneration of full-thickness skin defects by differentiated adipose-derived stem cells into fibroblast-like cells by fibroblast-conditioned medium. Stem cell research & therapy, 2017. 8(1): p. 92.
    91. Schmidt, B.A., et al., Intradermal adipocytes mediate fibroblast recruitment during skin wound healing. Development, 2013. 140(7): p. 1517-1527.
    92. Xia, W., et al., Complex epithelial–mesenchymal interactions modulate transforming growth factor‐β expression in keloid‐derived cells. Wound repair and regeneration, 2004. 12(5): p. 546-556.
    93. Wojtowicz, A.M., et al., The importance of both fibroblasts and keratinocytes in a bilayered living cellular construct used in wound healing. Wound repair and regeneration, 2014. 22(2): p. 246-255.
    94. Bajada, S., et al., Updates on stem cells and their applications in regenerative medicine. Journal of tissue engineering and regenerative medicine, 2008. 2(4): p. 169-183.
    95. Nuschke, A., Activity of mesenchymal stem cells in therapies for chronic skin wound healing. Organogenesis, 2014. 10(1): p. 29-37.
    96. Jackson, W.M., et al., Mesenchymal stem cell therapy for attenuation of scar formation during wound healing. Stem cell research & therapy, 2012. 3(3): p. 20.
    97. Nakagawa, H., et al., Human mesenchymal stem cells successfully improve skin‐substitute wound healing. British Journal of Dermatology, 2005. 153(1): p. 29-36.
    98. Badiavas, E.V., et al., Participation of bone marrow derived cells in cutaneous wound healing. Journal of cellular physiology, 2003. 196(2): p. 245-250.
    99. Dai, Y., et al., Skin epithelial cells in mice from umbilical cord blood mesenchymal stem cells. Burns, 2007. 33(4): p. 418-428.
    100. Kwon, D.S., et al., Treatment with bone marrow‐derived stromal cells accelerates wound healing in diabetic rats. International wound journal, 2008. 5(3): p. 453-463.
    101. Chen, S., et al., Mesenchymal stem cell-laden anti-inflammatory hydrogel enhances diabetic wound healing. Scientific reports, 2015. 5: p. 18104.
    102. da Silva, L., et al., Stem cell–laden hyaluronic acid–based spongy-like hydrogels for an integrated healing of diabetic wounds pathophysiologies. J. Investig. Dermatol, 2017. 137: p. 1541-51.
    103. Xu, Q., et al., A hybrid injectable hydrogel from hyperbranched PEG macromer as a stem cell delivery and retention platform for diabetic wound healing. Acta biomaterialia, 2018. 75: p. 63-74.
    104. Rice, J.J., et al., Engineering the regenerative microenvironment with biomaterials. Advanced healthcare materials, 2013. 2(1): p. 57-71.
    105. da Silva, L., et al., Engineered hydrogel-based matrices for skin wound healing, in Wound Healing Biomaterials. 2016, Elsevier. p. 227-250.
    106. da Silva, L.P., et al., Hydrogel-Based Strategies to Advance Therapies for Chronic Skin Wounds. Annual review of biomedical engineering, 2019. 21: p. 145-169.
    107. Kucharzewski, M., et al., Novel trends in application of stem cells in skin wound healing. European journal of pharmacology, 2018.
    108. Galiano, R.D., et al., Quantitative and reproducible murine model of excisional wound healing. Wound Repair and Regeneration, 2004. 12(4): p. 485-492.
    109. Wang, X., et al., The mouse excisional wound splinting model, including applications for stem cell transplantation. Nature protocols, 2013. 8(2): p. 302.
    110. Pelton, J.T., et al., Spectroscopic methods for analysis of protein secondary structure. Analytical biochemistry, 2000. 277(2): p. 167-176.
    111. Brown III, F., et al., The collagen-like triple helix to random-chain transition: Experiment and theory. Journal of molecular biology, 1972. 63(1): p. 101-115.
    112. Pelc, D., et al., Role of microscopic phase separation in gelation of aqueous gelatin solutions. Soft matter, 2014. 10(2): p. 348-356.
    113. Yousif, E., et al., Photodegradation and photostabilization of polymers, especially polystyrene: review. Springerplus, 2013. 2.
    114. Karuppuswamy, P., et al., Functionalized hybrid nanofibers to mimic native ECM for tissue engineering applications. Applied Surface Science, 2014. 322: p. 162-168.
    115. Lee, J.W., et al., Cellulose/poly-(m-phenylene isophthalamide) porous film as a tissue-engineered skin bioconstruct. Results in Physics, 2018. 9: p. 113-120.
    116. Queen, D., et al., THE PRECLINICAL EVALUATION OF THE WATER-VAPOR TRANSMISSION RATE THROUGH BURN WOUND DRESSINGS. Biomaterials, 1987. 8(5): p. 367-371.
    117. Lamke, L.-O., Evaporative water loss from burns under different environmental conditions. Scandinavian journal of plastic and reconstructive surgery, 1971. 5(2): p. 77-81.
    118. Lee, S.H., et al., Effects of human adipose-derived stem cells on cutaneous wound healing in nude mice. Annals of Dermatology, 2011. 23(2): p. 150-155.
    119. Rodriguez, J., et al., Intradermal injection of human adipose-derived stem cells accelerates skin wound healing in nude mice. Stem cell research & therapy, 2015. 6(1): p. 241.
    120. Wei, L.-G., et al., A gelatin/collagen/polycaprolactone scaffold for skin regeneration. PeerJ, 2019. 7: p. e6358.
    121. Aijaz, A., et al., Coencapsulation of ISCs and MSCs Enhances Viability and Function of both Cell Types for Improved Wound Healing. Cellular and Molecular Bioengineering, 2019: p. 1-13.
    122. Chen, A., et al., Biodegradable copolypeptide hydrogel prodrug accelerates dermal wound regeneration by enhanced angiogenesis and epithelialization. RSC advances, 2018. 8(19): p. 10620-10626.
    123. Shou, K., et al., Induction of mesenchymal stem cell differentiation in the absence of soluble inducer for cutaneous wound regeneration by a chitin nanofiber‐based hydrogel. Journal of tissue engineering and regenerative medicine, 2018. 12(2): p. e867-e880.
    124. Chuang, C.-H., et al., Comparison of covalently and physically cross-linked collagen hydrogels on mediating vascular network formation for engineering adipose tissue. Artificial cells, nanomedicine, and biotechnology, 2018. 46(sup3): p. S434-S447.
    125. Chen, Y.X., et al., A novel suspended hydrogel membrane platform for cell culture. Journal of Nanotechnology in Engineering and Medicine, 2015. 6(2): p. 021002.
    126. Rizwan, M., et al., Sequentially-crosslinked bioactive hydrogels as nano-patterned substrates with customizable stiffness and degradation for corneal tissue engineering applications. Biomaterials, 2017. 120: p. 139-154.
    127. Lamke, L.-O., et al., The evaporative water loss from burns and the water-vapour permeability of grafts and artificial membranes used in the treatment of burns. Burns, 1977. 3(3): p. 159-165.
    128. Xu, R., et al., Controlled water vapor transmission rate promotes wound-healing via wound re-epithelialization and contraction enhancement. Scientific reports, 2016. 6: p. 24596.
    129. Coviello, T., et al., Polysaccharide hydrogels for modified release formulations. Journal of controlled release, 2007. 119(1): p. 5-24.
    130. Queen, D., et al., The preclinical evaluation of the water vapour transmission rate through burn wound dressings. Biomaterials, 1987. 8(5): p. 367-371.
    131. Occhetta, P., et al., Fabrication of 3D cell-laden hydrogel microstructures through photo-mold patterning. Biofabrication, 2013. 5(3): p. 035002.
    132. Lin, R.-Z., et al., Transdermal regulation of vascular network bioengineering using a photopolymerizable methacrylated gelatin hydrogel. Biomaterials, 2013. 34(28): p. 6785-6796.
    133. Dua, R., et al., Relative survivability of human osteoblasts is enhanced by 39 C and ascorbic acid after exposure to photopolymerization ingredients. Cytotechnology, 2013. 65(4): p. 587-596.
    134. Gu, Y., et al., Reversible physical crosslinking strategy with optimal temperature for 3D bioprinting of human chondrocyte-laden gelatin methacryloyl bioink. Journal of biomaterials applications, 2018. 33(5): p. 609-618.
    135. Oh, M., et al., Exosomes derived from human induced pluripotent stem cells ameliorate the aging of skin fibroblasts. International journal of molecular sciences, 2018. 19(6): p. 1715.
    136. Zhao, B., et al., Exosomes derived from human amniotic epithelial cells accelerate wound healing and inhibit scar formation. Journal of molecular histology, 2017. 48(2): p. 121-132.
    137. Shi, Q., et al., GMSC-derived exosomes combined with a chitosan/silk hydrogel sponge accelerates wound healing in a diabetic rat skin defect model. Frontiers in physiology, 2017. 8: p. 904.
    138. Zhang, J., et al., Exosomes released from human induced pluripotent stem cells-derived MSCs facilitate cutaneous wound healing by promoting collagen synthesis and angiogenesis. Journal of translational medicine, 2015. 13(1): p. 49.

    QR CODE