研究生: |
談得聖 Tan, Te-Sheng |
---|---|
論文名稱: |
在小盤天秤上的硬幣稱重問題之準確解 Exact Bounds for Tiny-Pan Coin Weighing |
指導教授: |
韓永楷
Hon, Wing-Kai |
口試委員: |
彭勝龍
Peng, Sheng-Lung 謝孫源 Hsieh, Sun-Yuan 李哲榮 Lee, Che-Rung 蔡孟宗 Tsai, Meng-Tsung 廖崇碩 Liao, Chung-Shou |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 資訊系統與應用研究所 Institute of Information Systems and Applications |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 英文 |
論文頁數: | 55 |
中文關鍵詞: | 假幣問題 、條件整數分割 、圖論 |
外文關鍵詞: | Coin Weighing, Tiny-Pan, Integer partition avoid f |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
尋找假幣是一個經典問題。本研究討論在給定f 個相同重量的假硬幣和r 個相同重量的真硬幣情況下,且天平的每個秤盤只能恰好容納一個硬幣時,要如何快速地將一對真
假硬幣放在天平上。我們將這個問題與另外兩個看似無關的優化問題等價,其中一個是圖論的,而另一個是數論的,運用這兩個不同的領域讓我們可以用不同的觀點建構出最佳測試策略(optimal testing scheme),並創新了一種有條件的整數分割問題(partition with avoidance)。此外,我們還討論了這個問題的一些推論性變體(inferential variants),並展示了這些問題與原始問題的緊密關係。
Searching for counterfeit coins is a classical problem. In this thesis, we study a variant of this problem where each pan of the balance scale can hold exactly one coin. Given f fake coins of the same weight and r real coins of the same weight, we show how to construct an optimal testing scheme, which uses the minimum number of comparisons in the worst case, that guarantees a real coin and a fake coin will be compared. We show that this problem is equivalent to two other seemingly unrelated optimisation problems, one from graph theory and the other from number theory, where the equivalences respectively allow us to prove optimality and speed up our construction method. Moreover, we also discuss some inferential variants of this problem, and demonstrate strong connections of these problems with the original one.
[1] Martin Aigner and Anping Li. Searching for Counterfeit Coins, Graphs and Combinatorics, 13(1):9-20, 1997.
[2] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms (3rd edition), 2009.
[3] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness, 1979.
[4] Howard D. Grossman. The Twelve-Coin Problem, Scripta Mathematica
XI, pages 360-361, 1945.
[5] Richard K. Guy and Richard J. Nowakowski. Coin-Weighing Problems, The American Mathematical Monthly, 102(2):164-167, 1995.
[6] Lorenz Halbeisen and Norbert Hungerbuhler. The General Counterfeit Coin Problem, Discrete Mathematics, 147(1-3):139-150, 1995.
[7] Godfrey H. Hardy and Srinivasa Ramanujan. Asymptotic Formulae in
Combinatory Analysis, Proceedings of the London Mathemetical Society, 2(17):75{115, 1918.
[8] Tanya Khovanova and Konstantin Knop. Coins of Three Different
Weights, e-Print archive, arXiv:1409.0250 [math.HO], 2014.
[9] Eric Purdy. Lower Bounds for Coin Weighing Problems, ACM Transac-tions on Computation Theory (TOCT), 2(2):Article 3, 2011.
[10] Laszlo Pyber. How to Find Many Counterfeit Coins? Graphs and Com-binatorics, 2(1):173-177, 1986.
[11] Peng-Jun Wan and Ding-Zhu Du. A (log2 3 + 1=2) Competitive Algorithm for the Counterfeit Coin Problem, Discrete Mathematics, 163(1-3):173-200, 1997.