研究生: |
蔡育岱 Tsai, Yu-Dai |
---|---|
論文名稱: |
Kerr-AdS 黑洞的相結構 The phase structure of Kerr-AdS black holes |
指導教授: |
李湘楠
Li, Hsiang-Nan |
口試委員: |
楊毅
Yang, Yi 張祥光 Chang, Hsiang-Kuang |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2013 |
畢業學年度: | 101 |
論文頁數: | 26 |
中文關鍵詞: | 黑洞 、負宇宙常數空間 、相變 、凡得瓦 、临界指数 、黑洞熱力學 |
外文關鍵詞: | black hole, Anti-de Sitter space, phase transition, van der Waals, critical exponent, thermodynamics |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
The phase structure of Kerr-AdS black holes is studied at three different temperatures, $T_{c1}$, $T_{c2}$ and $T_L$. At $T_{c1}$, a second order phase transition is identified to be in the same universality class as the van der Waals liquid-gas system. We derive the critical exponents ($\alpha$, $\beta$, $\gamma$, $\delta$)=(0, $\frac{1}{2}$, 1, 3) associated to this phase transition, and discuss the free energy and the scaling symmetry near the critical point. $T_L$ is the lowest temperature under which a Kerr-AdS black hole could reduce to a Schwarzschild-AdS black hole, and this temperature correspond to the critical temperature determined in the Hawking-Page phase transition. $T_{c2}$ is the temperature which separates the stable and partially unstable isotherms. Along with $T_{c2}$, we found an asymptotic value of angular momentum $\Omega_0$ = $1/l$ as $J$ goes to infinity. This asymptotic value reminisces us the minimal value of the molecule volume $V_0$ in the van der Waals liquid-gas system.
The phase structure of Kerr-AdS black holes is studied at three different temperatures, $T_{c1}$, $T_{c2}$ and $T_L$. At $T_{c1}$, a second order phase transition is identified to be in the same universality class as the van der Waals liquid-gas system. We derive the critical exponents ($\alpha$, $\beta$, $\gamma$, $\delta$)=(0, $\frac{1}{2}$, 1, 3) associated to this phase transition, and discuss the free energy and the scaling symmetry near the critical point. $T_L$ is the lowest temperature under which a Kerr-AdS black hole could reduce to a Schwarzschild-AdS black hole, and this temperature correspond to the critical temperature determined in the Hawking-Page phase transition. $T_{c2}$ is the temperature which separates the stable and partially unstable isotherms. Along with $T_{c2}$, we found an asymptotic value of angular momentum $\Omega_0$ = $1/l$ as $J$ goes to infinity. This asymptotic value reminisces us the minimal value of the molecule volume $V_0$ in the van der Waals liquid-gas system.
[1] Giovanni Arcioni and Ernesto Lozano-Tellechea. Stability and critical phenomena of black holes and black rings. Phys. Rev., D72:104021, 2005.
[2] Rabin Banerjee, Sujoy Kumar Modak, and Saurav Samanta. A New Phase Transition and Thermodynamic Geometry of Kerr- AdS Black Hole. 2010.
[3] Rabin Banerjee, Sujoy Kumar Modak, and Saurav Samanta. New approach to phase transitions in black holes. 2011.
[4] Rong-Gen Cai, Li-Ming Cao, and Ya-Wen Sun. Hawking-Page Phase Transition of black Dp-branes and R-charged black holes with an IR Cuto. JHEP, 0711:039, 2007.
[5] Rong-Gen Cai, Zhi-Jiang Lu, and Yuan-Zhong Zhang. Critical behavior in (2+1)-dimensional
black holes. Phys.Rev., D55:853-860, 1997.
[6] Rong-Gen Cai and Y.S. Myung. Critical behavior for the dilaton black holes. Nucl.Phys., B495:339-362, 1997.
[7] Rong-Gen Cai and Kwang-Sup Soh. Critical behavior in the rotating D-branes. Mod.Phys.Lett., A14:1895{1908, 1999.
[8] Rong-Gen Cai and Anzhong Wang. Thermodynamics and stability of hyperbolic charged
black holes. Phys.Rev., D70:064013, 2004.
[9] Marco M. Caldarelli, Guido Cognola, and Dietmar Klemm. Thermodynamics of Kerr-
Newman-AdS black holes and conformal eld theories. Class.Quant.Grav., 17:399{420, 2000.
[10] Steven Carlip and S. Vaidya. Phase transitions and critical behavior for charged black holes.
Class.Quant.Grav., 20:3827{3838, 2003.
[11] B. Carter. Hamilton-Jacobi and Schrodinger separable solutions of Einstein's equations. Com-
mun.Math.Phys., 10:280, 1968.
[12] Andrew Chamblin, Roberto Emparan, Cliord V. Johnson, and Robert C. Myers. Holography, thermodynamics and fluctuations of charged AdS black holes. Phys.Rev., D60:104026, 1999.
[13] P.C.W. Davies. THERMODYNAMICS OF BLACK HOLES. Proc.Roy.Soc.Lond., A353:499-521, 1977.
[14] G. W. Gibbons, M. J. Perry, and C. N. Pope. The First Law of Thermodynamics for Kerr-Anti-de Sitter Black Holes. Class. Quant. Grav., 22:1503-1526, 2005.
[15] N. Goldenfeld. Lectures on phase transitions and the renormalization group. Addison-Wesley
Publication Company, 1992.
[16] Sean A. Hartnoll, Christopher P. Herzog, and Gary T. Horowitz. Building a Holographic Superconductor. Phys.Rev.Lett., 101:031601, 2008.
[17] Sean A. Hartnoll, Christopher P. Herzog, and Gary T. Horowitz. Holographic Superconduc-
tors. JHEP, 12:015, 2008.
[18] S.W. Hawking and Don N. Page. Thermodynamics of Black Holes in anti-De Sitter Space. Commun.Math.Phys., 87:577, 1983.
[19] C.O. Lousto. The Emergence of an eective two-dimensional quantum description from the
study of critical phenomena in black holes. Phys.Rev., D51:1733-1740, 1995.
[20] Juan Martin Maldacena. The large N limit of superconformal eld theories and supergravity.
Adv. Theor. Math. Phys., 2:231-252, 1998.
[21] Makoto Natsuume. Critical phenomena in the AdS/CFT duality. Prog.Theor.Phys.Suppl., 186:491-497, 2010.
[22] T. Padmanabhan. Lessons from Classical Gravity about the Quantum Structure of Spacetime. J. Phys. Conf. Ser., 306:012001, 2011.
[23] R. E. Reichl. A Modern Course in Statistical Physics . University of Texas Press, Austin, TX, 1980.
[24] Anurag Sahay, Tapobrata Sarkar, and Gautam Sengupta. On The Phase Structure and Thermodynamic Geometry of R-Charged Black Holes. JHEP, 1011:125, 2010.
[25] Anurag Sahay, Tapobrata Sarkar, and Gautam Sengupta. Thermodynamic Geometry and Phase Transitions in Kerr- Newman-AdS Black Holes. JHEP, 04:118, 2010.
[26] Julian Sonner. A Rotating Holographic Superconductor. Phys. Rev., D80:084031, 2009.
[27] H. E. Stanley. Introduction to Phase Transitions and Critical Phemonena. Oxford University Press, New York, 1987.
[28] Erik P. Verlinde. On the Origin of Gravity and the Laws of Newton. 2010.
[29] Edward Witten. Anti-de Sitter space and holography. Adv. Theor. Math. Phys., 2:253 291, 1998.
[30] X. N. Wu. Multicritical phenomena of Reissner-Nordstrom anti-de Sitter black holes. Phys.Rev., D62:124023, 2000.