研究生: |
李安倫 Li, An-Lun |
---|---|
論文名稱: |
台灣飛航輻射劑量的研究與評估程式的開發 DEVELOPMENT, VALIDATION, AND DEMONSTRATION OF THE NTHU FLIGHT DOSE CALCULATOR |
指導教授: |
許榮鈞
Sheu, Rong-Jiun |
口試委員: |
劉鴻鳴
Liu, Hong-Ming 江祥輝 Jiang, Shiang-Huei |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 核子工程與科學研究所 Nuclear Engineering and Science |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 259 |
中文關鍵詞: | 宇宙射線 、飛航劑量 、FLUKA |
外文關鍵詞: | Cosmic-ray, Flight dose, FLUKA |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
宇宙射線自太空進入大氣層時,與空氣組成原子進行一連串碰撞與交互作用,產生次級宇宙射線的空氣簇射現象。由於大氣層提供的屏蔽保護在飛航高度相對較弱,飛航人員因而暴露在相對較高的輻射環境之中,其所受劑量有必要仔細評估。自從1996年開始,歐盟將飛航人員歸類為輻射工作人員。國際組織、世界各國也發表一些關於飛航人員劑量的量測與管理準則。順應世界潮流,台灣原能會也開始研究相關,改善飛航人員暴露劑量與管理。次級宇宙射線十分複雜,決定其絕對強度與能譜的主要因素包含經緯度、高度、以及太陽活度等等。大氣層次級宇宙射線組成粒子多樣且能量範圍廣,通常須以數值方法來評估對飛航人員與乘客的劑量貢獻。雖然相關文獻很多,但以作者觀察,文獻中的飛航劑量評估多著重在中高緯度國家,並不包含因垂直截止剛度幾乎是世界最高,而輻射劑量率相對較低的台灣等低緯度地區。因此本研究將著重探討台灣地區有興趣的熱門航線,並開發一套使用者友善的分析軟體,命名NTHU飛航劑量計算程式。
本論文接續實驗室先前研究的成果,擴充原有的50個模擬案例(44個簡化、6個完整),新增10個完整宇宙射線模擬案例(包含計算耗時的二次電磁輻射在內),擴充輻射劑量資料庫並改善電磁輻射劑量估算的擬合準確性。本研究完成開發一套飛航劑量計算程式,並與EURADOS報告中提及的11種程式針對23條航線劑量評估進行完整比較。完成程式驗證之後,本研究挑選台北出發的11條主要飛航路線,目的地涵蓋美洲、澳洲、歐洲、亞洲等主要都會,利用NTHU飛航劑量計算程式進行詳細分析。輻射劑量成分包括中子、質子、牟子、光子、電子與正子,並利用統計原理分析誤差可能的影響。本研究所開發之飛航劑量程式可方便提供研究人員、一般民眾或管制單位使用,有利相關教育與研究的提升。
Galactic cosmic rays from outer space enter the Earth’s atmosphere and interact with air nuclei, leading to a phenomenon called the cosmic-ray air shower. Because the atmosphere provides scant protection to aircraft at high altitudes, aircrew are exposed to elevated levels of cosmic radiation. It’s necessary to evaluate receiving dose of aircrew. Aircrew in the European Union have been recognized as occupationally exposed workers since 1996. Several national and international organizations have published guidelines for monitoring and managing the doses received by aircrew. In line with this trend, the Atomic Energy Council in Taiwan has initiated research on improving aircrew exposure and regulatory control. Absolute intensities and energy spectra of secondary components in the atmosphere are complex and depend on numerous factors, including altitude, latitude, and solar activity. Numerical methods are extensively used to evaluate radiation exposure for aircraft crew and passengers. Literature on this topic is abundant, and various assessment codes are currently being used for aircrew dosimetry. To the authors’ knowledge, most flight routes investigated in the literature serve cities at intermediate and high latitudes; these routes do not include various flights of interest in Taiwan, although where the geomagnetic cutoff rigidity is nearly the highest in the world and the intensity of cosmic radiation is relatively low. Therefore, this study performed appropriate dose assessments for popular flights in Taiwan and developed a reliable and easy-to-use computer program (NTHU Flight Dose Calculator) for this purpose.
10 completed simulation projects which content electronic components was added to improve accuracy of database, following by previous work, which contain 50 simulation projects (44 simplified & 6 completed projects). Using newly developed NTHU flight dose calculator to compare 11 different software in 23 flight routes, which from EURADOS report. Also, choosing flight routes from Taipei to 11 cities worldwide to calculate flight dose of interest in Taiwan. The radiation components include neutron, proton, muon, photon, electron and positron. Finally, we use error propagation theory to analyze and confirm the accuracy. The software is available to public and authority, and can become a tool of cosmic radiation research.
[1] V. F. Hess, "Über Beobachtungen der durchdringenden Strahlung bei sieben Freiballonfahrten". Physikalische Zeitschrift, vol. 13, pp. 1084–1091, 1912
[2] A.K. Singh, Devendraa Siingh, R.P. Singh, “Impact of galactic cosmic rays on Earth’s atmosphere and human health”, Atmospheric Environment, vol. 45, 3806-3818, 2011
[3] Millikan, R.A., Cameron, G.H., “The origin of cosmic rays”, Phys. Rev., vol. 32, pp. 533-557, 1928
[4] K. Herbst, A. Kopp, B. Heber, “Influence of the terrestrial magnetic field geometry on the cutoff rigidity of cosmic ray particles”, Ann. Geophys., vol. 31, pp. 1637–1643, 2013
[5] B. J. Lewis, M. J. McCall, A. R. Green et al., “Aircrew exposure from cosmic radition on commercial airline routes”, Radiation Protection Dosimetry, vol. 93, No. 4, pp. 293–314, 2001
[6] Kyle Copeland, “Recent and Planned Developments in the CARI Program”, FAA DOT/FAA/AM-13/6 Final Report, 2013
[7] Kyle Copeland, “CARI-7A: Development and validation”, Radiation Protection Dosimetry, pp.1-13, 2017
[8] J.F. Bottollier-Depois, P. Beck, M. Latocha et al., “Comparison of Codes Assessing Radiation Exposure of Aircraft Crew due to Galactic Cosmic Radiation”, EURADOS Report, vol. 3, 2012
[9] Luis E Alvarez, Sebastian D Eastham, Steven R H Barrett, “Radiation dose to the global flying population”, Journal of Radiological Protection, vol. 36, pp. 93–103, 2016
[10] ICRP, 1991. 1990 Recommendations of the International Commission on Radiological Protection. ICRP Publication 60. Ann. ICRP 21 (1-3).
[11] B. J. Lewis, L. G. I. Bennett, A. R. Green, M. J. McCall, B. Ellaschuk, A. Butler and M. Pierre et al., “Galactic and solar radiation exposure to aircrew during a solar cycle”, Radiation Protection Dosimetry, vol. 102, pp. 207–227, 2002
[12] International Geomagnetic Reference Field - 8th Generation: https://www.ngdc.noaa.gov/IAGA/vmod/igrf8.html (2017/6)
[13] GeoMagSphere-The Transport Model for Magnetosphere: http://www.geomagsphere.org/index.php/the-code (2017/6)
[14] COSMIC RAYS ON SPACESHIP EARTH: http://neutronm.bartol.udel.edu/catch/cr2.html (2017/6)
[15] P. Carlson, A. A. Watson, “Erich Regener and the ionisation maximum of the atmosphere”, Hist. Geo Space Sci., vol. 5, pp. 175–182, 2014
[16] I. G. Usoskin, G. A. Bazilevskaya, G. A. Kovaltsov, “Solar modulation parameter for cosmic rays since 1936 reconstructed from ground‐based neutron monitors and ionization chambers”, J. Geophys. Res., vol. 116, A02104, doi:10.1029/2010JA016105, 2011
[17] Alfredo Ferrari et al., “Fluka:a multi-particle transport code version 2011”, CERN-2005-010 INFN TC-05/11 SLAC-R-773, 2005
[18] G. Battistoni, F. Cerutti A. Fasso, A. Ferrari, S. Muraro, J. Ranft, S. Roesle and P.R. Sala, “The FLUKA code: description and benchmarking”, AIP Conf. Proc., vol. 896, pp. 31-49, DOI: 10.1063/1.2720455, 2007
[19] G. D. Badhwar, P. M. O’Neill, “Galactic cosmic radiation model and its applications”, Adv. Space Rex, vol. 17, No. 2, pp. (2)7-(2)17, 1996
[20] Pan Wei Fan, “Monte Carlo simulations of cosmic radiation in atmosphere and an assessment of aviation dose”, National Tsing Hua University, Master degree, 2015
[21] MAPS & GRAPHICS: (2017/6) http://www.amaps.com/mapstoprint/OUTLINE%20MAPS/free_map_of_world.htm
[22] Cleve Moler, “The growth of MATLAB and MathWorks over two decades”, The MathWorks New&Notes, pp. 22-24, January 2006
[23] FlightAware: https://zh-tw.flightaware.com/ (2017/6)
[24] Boeing 747 Pilot Operation Handbook: http://altairva-fs.com/fleet/poh/Boeing%20747%20POH.htm (2017/6)
[25] Kenji Kamiya, Kotaro Ozasa et al., “Long-term effects of radiation exposure on health”, The Lancet, vol. 386, pp. 469-478, 2015
[26] “Comparison of Codes Assessing Radiation Exposure of Aircraft Crew due to Galactic Cosmic Radiation”, European Commission Radiation Protection No. 173, ISSN-1681-6803.
[27] 台灣行政院原子能委員會官方網站: http://www.aec.gov.tw/ (2017/6)
[28] G. Desmaris, “Cosmic Radiation in Aviation. The Radiological Protection of Air France Aircraft Crews”, 3rd ICRP International Symposium, Seoul, Korea, 2015
[29] J.R. Davis, R. Johnson, J. Stepanek, Fundamentals of Aerospace Medicine (4rd ed.), pp. 228-230, Wolters Kluwer, ISBN:978-0781774666, 2008.
[30] “Evaluation of the Cosmic Radiation Exposure of Aircraft Crew, A background to aircrew dose evaluation with results reported within the EC contract FIGM-CT-2000-00068 (DOSMAX)”, European Commission, 2005
[31] Griffiths, J. David, Introduction to Electrodynamics (3rd ed.), p. 204, Prentice Hall, ISBN:0-13-805326-x, 1998