研究生: |
曾永信 Yung-Shin Tseng |
---|---|
論文名稱: |
具開孔之電路板設計於自然對流下電子冷卻能力提昇之研究 Enhancement of Thermal Characteristics for Electronic Cooling under Natural Convection through Substrate with Apertures |
指導教授: |
白寶實
Bau-Shei Pei 洪祖全 Tzu-Chen Hung |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 105 |
中文關鍵詞: | 電子散熱 、被動式散熱 、電路板開孔 、熱輻射 、設計自由度 |
外文關鍵詞: | Electronic Cooling, Passive Cooling, Substrate with Apertures, Thermal Radiation, Design Freedom |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究藉由實驗與數值模擬方法進行電路板開孔之被動式散熱概念之可行性驗證,以期此構想能於實際產品之設計中提供散熱能力改善與成本降低之目的。透過初步的研究得知,此構想可以在自然對流中有效的改善電路板下表面之熱邊界層分佈,因此不需額外進行主動式散熱設計即可增強電子產品本身的散熱效果。進一步的探討更發現,電路板開孔之散熱能力可以透過研究所獲得的數個設計準則來加以強化;例如,控制電路板開孔位置之周長截斷率、增加開孔面積與周長以及利用表面Nu值輔助電路板開孔設計等。最後,研究更藉由外殼的流體導引孔以及非對稱配置等數種設計方式之結合,使得開孔構想除了能使原有的最佳熱阻獲得15%的改善以外,更可降低其參數限制與製程成本並提高產品之設計自由,而使得開孔構想的實用性得以提昇。另一方面,研究過程中發現熱輻射為一不可或缺之移熱機制,此一熱傳機制的忽略除了造成最高溫度的評估誤差之外。結果更顯示如幾何形狀、擺置方式以及流場條件等參數對於溫度的影響趨勢可能此而產生變化。不幸的是,此機制卻在大多數的電子散熱分析或是計算中被加以忽略。因此研究中更藉由合理的參數來建立電子產品之熱輻射重要性評估方法,以供設計者對電子散熱中熱輻射之重要性有定性的了解。
In this study, a CFD model has been developed to interpret and validate the experimental results originating from a concept of enhancing heat dissipation from a substrate with flow inducing openings. Through parametric study as a part of the preliminary research, the practicability and the influence of parameters of this previously unnoticed cooing concept has been discussed. Results indicate that the openings will have a destructive effect on the growth of the boundary layer occurring on the lower surface of the substrate; and hence improve the cooling ability of a configured module without using any additional active heat dissipation measures. More improvement investigations further indicate that the cooling ability of the opening can be augmented through the design rules such as a control of the opening rate to reduce the conduction resistance, an enhancement of net heat transfer ability through a distribution analysis of Nu numbers, etc. Finally, by combining a guide aperture on the shell board and unsymmetrical arrangement design, some adverse phenomena or effects (e.g., the limit of aperture ratio and an obstruct flow within the upper channel) have been obviously improves as found in this study. The concept of opening not only improves 15% in heat dissipation the best original design, but also eliminates some difficulties in finding an appropriate thermal solution such as the manufacturing cost and the design flexibility. Moreover, results show that thermal radiation is an important cooling mechanism as a part of electronic cooling modes, but it is usually overlooked by most researches with an incorrect judgment. A reasonable diagnosis method was also developed in order to verify the issues under investigation. This method would provide future designers with a qualitative understanding of the importance of thermal radiation.
1. Bar-Cohen, A., Kraus, A. D., and Davidson, S. F., 1983, “Thermal Frontiers in the Design and Packaging of Microelectronic Equipment,” J. Mechanical Engineering, 105(6), pp. 53-59.
2. Yeh, L. T., 1995, “Review of Heat Transfer Technologies in Electronic Equipment,” ASME J. Electronic Packaging, 117, pp. 333-339.
3. Viswanath, R., Wakharkar, V., Watwe, A., and Lwbonheur, V., 2000, “Thermal Performance Challenges from Silicon to Systems,” Intel Technology Journal Q3, pp. 1-16.
4. Sinton, R. A., Kwark, Y., Gruenbaum, P., and Swanson, R. M., 1985, “Silicon point contact concentrator solar cells”, Conference record, 18th IEEE PVSC, pp. 61-65.
5. Mbewe, D. J., Card, H. C., and Card, D. C., 1985, “A model of silicon solar cells for concentrator photovoltaic and photovoltaic thermal system design”, Sol. Energy 35(3), pp. 247-258.
6. Dalal, V. L., Moore, A. R., 1977, “Design considerations for high-intensity solar cells”, J. Appl. Phys. 48 (3), pp. 1244-1251.
7. SunPower, 2002, Application notes for HED312 Silicon Concentrator Solar Cell.
8. Horne, W. E., 1993, “Solar energy system,” patent US5269851, USA.
9. Sparrow, E. M., Yanezmoreno, A. A., and Otis, D. R., 1984, “Convective Heat Transfer Response to Height Differences in an Array of Block-Like Electronic Components,” Int. J. Heat and Mass Transfer, 27, pp. 469-473.
10. Sparrow, E. M., Verumi, S. B., and Kadle, D. S., 1983, “Enhanced and Local Heat Transfer, Pressure Drop, and Flow Visualization for Arrays of Block-Like Electronic Components,” Int. J. Heat Mass Transfer, 27, pp. 689-699.
11. Peterson, G. P. and Ortega, A., 1990, “Thermal Control of Electronic Equipment and Devices,” Advances in Heat Transfer, Academic Press, New York, 20, pp. 181-314.
12. Incropera, F. P., 1988, “Convection Heat Transfer in Electronic Equipment,” ASME J. Heat Transfer, vol. 110, pp. 1097-1107.
13. Incropera, F. P., 1990,“Liquid immersion cooling of electronic components,” in A. E. Bergles (ed.) Heat Transfer in Electronic and Microelectronic Equipment, pp. 407-444.
14. Kim, S. Y., Sung, H. J., and Hyun, J. M., 1992, “Mixed convection from multiple-layered boards with cross-stream wise periodic boundary conditions,” Int. J. Heat Mass Transfer, 35, pp. 2941-2952.
15. Davalath, J., Bayazitoglu, Y., 1987, “Forced convection cooling across rectangular blocks”, J. Heat transfer, 109 pp. 321-327.
16. Hung, T. C., Wang, S. K., and Tsai, F. P., 1997, “Simulations of Passively Enhanced Conjugate Heat Transfer across an Array of Volumetric Heat Sources,” Communications in Numerical Methods in Engineering, 13, pp. 855-866.
17. Hung, T. C., and Fu, C. S., 1999, “Conjugate heat transfer analysis for the passive enhancement of electronic cooling through geometric modification in a mixed convection domain,” Numerical Heat Transfer, Part A, 35, pp. 519-535.
18. Hung, T.C., 2001, “A conceptual design of thermal modeling for efficiently cooling an array of heated devices under low Reynolds numbers,” Numerical Heat Transfer, Part A, 39, pp. 361-382.
19. Ellison, G. N., 1989, “Thermal Computations for Electronic Equipment,” R. E. Krieger Publishing Company, Malabar, FL.
20. Aghazadeh, M., and Mallik, D., 1990, “Thermal Characteristic of Single and Multilayer High Performance PQFP Packages,” IEEE Transactions on Components, Hybrids, and Manufacturing Technology-Part A, 20(2), pp. 975-979.
21. Ridsdle, Joiner, G., B., Bigler, J. and Torres, V. M., 1994, “Thermal Performance Limits of the QFP Family,” IEEE transactions on Components, Hybrids, and Manufacturing Technology-Part A, 17(4), pp. 427-443.
22. Edwards, D. R., Hwang, M. and Stearns, B., 1995, “Thermal Enhancement of Plastic IC packages,” IEEE transactions on Components, Hybrids, and Manufacturing Technology Part A, 18(1), pp. 57-67.
23. EIA/JEDEC Standard, 1995, “Integrated Circuits Thermal Test Method Environment Conditions-Natural Convection (Still Air),” TIS/JESD51-2.
24. Rao, V. R., Venkateshan, S. P., 1996, “Experimental study of free convection and radiation in horizontal fin arrays,” Int. J. Heat Mass Transfer, 39 (4), pp. 779-789.
25. Sparrow, E. M., Vemuri, S.B. 1985, “Natural convection –radiation heat transfer from highly populated pin-fin arrays,” ASME J. Heat Transfer, 107, pp. 190-197.
26. Yu, E., Joshi, Y., 1999, “Heat transfer in discretely heated side vented compact enclosures by combined conduction, convection and radiation,” ASME J. Heat Transfer, 121, pp. 1002-1010.
27. Kobus, C. J., Oshio, T., 2005, “Predicting the thermal performance characteristics of staggered vertical pin fin array heat sinks under combined mode radiation and mixed convection with impinging flow,”Int. J. Heat and Mass Transfer, 48, pp. 2684-2696.
28. Tseng, Y.S., Hung, T.C., and Pei, B.S., 2007, “The Effects of Thermal Radiation for Electronic Cooling on Modified PCB Geometry under Natural Convection,” Numerical Heat Transfer, Part A, 51, pp. 195-210.
29. Incropera, F. P., and DeWitt, D. P., 1996, “Fundamentals of Heat and Mass Transfer-4th ed.,” Wiley, New York, pages.719 and 733, Chap. 13.
30. Chui, E. H., Raithby, G. D., 1993, “Computation of Radiant Heat Transfer on a Non- Orthogonal Mesh Using the Finite-Volume Method,” Numerical Heat Transfer, Part B, 23, pp. 269-288.
31. Chai, J. C., Lee, H. S., and Patanker, S. V., 1995, “Finite Volume Radiative Heat Transfer Procedure for Irregular Geometries,” AIAA J. Thermophys. Heat transfer, 9(3), pp. 410-415.
32. Kim, M. Y., and Baek, S. W., 1996, “Numerical Analysis of Conduction, Convection, and Radiation in a Gradually Expanding Channel,” Numerical Heat Transfer, Part A, 29(7), pp. 725-740.
33. Baek, S. W., and Kim, M. Y., 1998, “Nonorthogonal Finite-Volume Solutions of Radiative Heat Transfer in a Three-Dimensional Enclosure,” Numerical Heat Transfer, Part B, 34(4), pp. 419-437.
34. Cheong K. B., Song, T. H., 1997, An Alternative Discrete Ordinates Method with Interpolation and Source Differencing for Two-Dimensional Radiative Transfer Problems, Numerical Heat Transfer, Part A, 32, pp. 107-125.
35. Liu, J. S., Shang, H. M., Chen, Y. S., and Wang, T. S., 1997, “Prediction of Radiative Transfer in General Body-Fitted Coordinates,” Numerical Heat Transfer, Part B, 31, pp. 423-439.
36. Hottel, H. C., 1930, “Radiant Heat Transmissions, Mech. Eng.,” 52, pp. 699-704.
37. Matweb, “http://www.matweb.com”.
38. Material Emissivity Properties, “http://www.electro-optical.com/bb_rad/emissivity /matlemisivty.htm”.
39. Vandoormaal, J. P., and Raithby, G. D., 1984, “Enhancements of the SIMPLE Method for Predicting Incompressible Fluid Flows,” Numerical Heat Transfer, 7, pp.147-163.
40. Jhang, J. P., and Chen, H. L., 2001, “Application of the Taguchi Method to Improve the Process Yield Rate For Air Cleaners in Toyota Corona Vehicles,” Int. J. of Reliability Quality and Safety Engineering, Vol. 8, No. 3, pp. 219-213.
41. Logothetis, N., and Salmon, J. P., 1988, “Taguchi Methods: Tolerance Design and Analysis of Audio-Circuits,” Proceedings of the 1988 European Conference, Elsevier Applied Science, London, England, pp. 161-175.
42. Sharon M., Apte, P. R., Purandare, S. C., and Zacharia, R., 2005, “Application of the Taguchi Analytical Method for Optimization of Effective Parameters of the Chemical Vapor Deposition Process Controlling the Production of Nanotubes /Nanobeads,” J. Nanoscience and Nanotechnology, Vol. 5, No. 2, pp. 288-295.
43. Kackar, R., 1985, "Off-Line Quality Control, Parameter Design, and the Taguchi Method", Journal of Quality Technology, Vol. 17, No.4, pp. 176-188.
44. Welch, W., Yu, T. K.; Kang, S., Sacks, J., 1990, “Computer experiments for quality control by parameter design”, Journal of Quality Technology, Vol. 22, pp. 15-22.
45. Vlachogiannis, J. G., Vlachonis, G. V., 2005, “Taguchi's method in a marine sediment's heavy-metal determination” International Journal of Environmental and Analytical Chemistry, Vol. 85, No 8, pp. 553-565.
46. Zhao, Z., 2003, “Thermal design for a broadband communication system with detailed modeling for TBGA packages,” Microelectronics Reliability, 43, pp. 785-793.
47. Howell, J. R., 1982, “A Catalog of Radiation Configuration Factor,” McGraw-Hill, New York.
48. Goldstein, R. J., Sparrow, E. M., and Jones, D. C., 1973, “Natural Convection Adjacent to Horizontal Plates,” Int. J. Heat Mass Transfer, Vol. 16, pp. 1025.
49. Lloyd, J. R., and Moran, W. R., 1974, “Natural Convection Adjacent to Horizontal Surface of Various Plan forms,” ASME paper WA/HT-66.
50. Sala, G., 1989, “Cells and Optics for Photovoltaic Concentration,” Adam Hilger Bristol, Ch.8 pp. 239-267.