研究生: |
陳建廷 Chen, Jian-Ting |
---|---|
論文名稱: |
馬鞍山電廠 RELAP5/MOD3.3 破口喪失冷卻水事故分析 Development of Maanshan RELAP5/MOD3.3 Model and Application of Design Basis LOCA Analysis |
指導教授: |
馮玉明
Ferng, Yuh-Ming 王仲容 Wang, Jong-Rong |
口試委員: |
曾永信
Tseng, Yung-Shin 楊融華 Yang, Jung-Hua |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 核子工程與科學研究所 Nuclear Engineering and Science |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 81 |
中文關鍵詞: | 馬鞍山電廠 、大破口喪失冷卻水 、小破口喪失冷卻水 、不準度分析 、RELAP5 |
外文關鍵詞: | Maanshan, LBLOCA, SBLOCA, Uncertainty analysis, RELAP5 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
大破口喪失水流事故是核能電廠最嚴重的設計基準事故,電廠安全系統必須確保在該事故發生時燃料護套溫度維持在安全限值以下,因此,大破口喪失冷卻水事故模擬對於電廠安全分析,或是分析模型的驗證都相當重要。美國核管會(NRC)是世界上重要核能電廠管制機構,現行法規很多都參考美國核管會所提出的安全理念發展而來,早期為了將安全列第一考量,對於LOCA分析使用比較保守的分析方法,大多遵照美國核管會分析規範10CFR50.46 Appendix K 方法論。隨著電腦科技進步以及核能分析程式的演進,核能的熱水流程式大多都能模擬整個事故暫態,並且能夠模擬更複雜的情況,模擬的結果也相較準確,最佳化估算以及不準度分析方法論逐漸流行。 本研究主要目的是建立核三廠破口喪失冷卻水事故最佳化估算分析方法,使用最佳化程式RELAP5/MOD3.3 patch05版本。分析流程為主要兩部分,首先是基本案例分析探討LBLOCA的熱水流現象,以及爐心熱傳現象對燃料護套溫度影響。在了解LBLOCA爐心熱傳機制後,透過不準度分析更進一步考慮電廠實際運轉中的系統參數偏差,探討其偏差對燃料護套溫度估算的影響。
Large Break Loss of Coolant Accident (LBLOCA) is the most severe design base accident. The safety systems have to ensure the peak cladding temperature below the critical limit during LBLOCA. Therefore, the simulation of LBLOCA is important for NPP safety analysis. NRC is one of the most important regulatory agency and also lay down many regulations. In the past time, conservative approach was widely used. Most of the countries followed the 10CFR50.46 Appendix K methodology for the LOCA analysis. Nowadays, in order to make the analysis results close to the physical reality, best-estimate plus uncertainty (BEPU) approach is getting popular. The main objective of this research is to establish a BEPU approach for Maanshan NPP LOCA analysis using RELAP5/MOD3.3. The analysis method will be divided into two part. First of all, a basic LOCA analysis will be performed to learn the thermal-hydraulic phenomenon during LOCA, and learn how the thermal-hydraulic phenomenon influence the cladding temperature. Second, uncertainty analysis will be performed to consider the deviations in the real situation. Also, sensitivity analysis will be done to learn how the system deviations affect the cladding temperature.
1. Taiwan Power Company, Final Safety Analysis Report for
Maanshan Nuclear Power Station Units 1&2 (FSAR), Taiwan Power
Company, Republic of China (Taiwan), 1983.
2. NUREG/IA-0028, Review of LOFT Large Break Experiments.
3. IAEA-TECDOC-1332, “Safety margins of operating reactors
Analysis of uncertainties and implications for decision
making”, January 2003.
4. Thomas K.S. Liang, “Development and application of a
deterministic-realistic hybrid methodology for LOCA licensing
analysis”, Nuclear Engineering and Design. 241, 2011, pp.
1857-1863.
5. WCAP-17054-P, “Best-Estimate Analysis of theLarge-Break Loss-
of-Coolant Accident for Maanshan Units 1 and 2 Nuclear
PowerPlant Using the ASTRUM Methodology”, June 2009.
6. S. S. Wilks, “Determination of Sample Sizes for Setting
Tolerance Limits”, 1941.
7. Steven K. Thompson, “Sampling”, 10 February 2012.
8. R. G. LINFORD, C. OSGOOD, “MONTE CARLO METHODS AND LATTICE
DISCONTINUITIES”, Surface Science, 34, 1972, pp. 482-498.
9. RELAP5/MOD3.3 CODE MANUAL VOLUME IV: MODELS AND CORRELATIONS,
June 2016.
10. RELAP5/MOD3.3 CODE MANUAL VOLUME III: DEVELOPMENTAL ASSESSMENT
PROBLEMS, June 2016.
11. A. R. Edwards and F. P. O'Brien, "Studies of Phenomena
Connected with the Depressurization of Water Reactors,"
Journal of the British Nuclear Energy Society, 9, 1970, pp.
125-135.
12. John A. Trapp, Victor H. Ransom, “A CHOKED-FLOW CALCULATION
CRITERION FOR NONHOMOGENEOUS, NONEQUILIBRIUM, TWO-PHASE
FLOWS”, Int. L MuMphase Flow, Vol.8, No. 6, 1982, pp. 669-681.
13. R. E. Henry and H. K. Fauske. “The Two-Phase Critical Flow of
One-Component Mixtures in Nozzles, Orifices, and Short Tubes.”
Transactions of ASME, Journal of Heat Transfer. 93. 1971. pp.
179-187.
14. 台灣電力公司第三核能發電廠, 「核能發電訓練基本教材:壓水式反應器介
紹」,(1995年)。
15. NUREG/IA-0472, RELAP5/MOD3.3 Model Assessment of Maanshan
Nuclear Power Plant with SNAP Interface.
16. DUFFEY, R.B., PORTHOUSE, D.T.C. “The physics of rewetting in
water reactor emergency core cooling”. Nucl. Eng. Design, 25,
1973, pp. 379~394.
17. R. F. Bartlett, “Linear Modelling of Pearson's Product Moment
Correlation Coefficient: An Application of Fisher's $z$-
Transformation”, Journal of the Royal Statistical Society.
Series D (The Statistician) Vol. 42, No. 1, 1993, pp. 45-53.
18. Kawanishi, K., Tsuge, A., Fujiwara, M., Kohriyama, T., Nagumo,
H. “Experimental study on heat removal during cold leg small
break LOCAs in PWRs”. J. Nucl. Sci. Technol. 28 (2), 1991,
pp. 555–569.
19. Yeon-Sik Kim, Hyun-Sik Park, Seok Cho, Ki-Yong Choi, Kyoung-Ho
Kang. “Reflux condensation behavior in SBLOCA tests of ATLAS
facility”. Annals of Nuclear Energy 99, 2017, pp. 227–239.
20. Hard TUOMISTO and Pirjo KAJANTO , “TWO-PHASE FLOW IN A FULL-
SCALE LOOP SEAL FACILITY”. Nucl. Eng. Design, 107, 1988, pp.
295-305.
21. Yeon-Sik Kim , Seok Cho, “An experimental investigation of
loop seal clearings in SBLOCA tests”. Annals of Nuclear
Energy, 63, 2014, pp. 721-730.