簡易檢索 / 詳目顯示

研究生: 陳建彣
Chen, Jian-Wen
論文名稱: 以耗散粒子動力學模擬探討水分子的靜電感應作用對相態變化之影響
Effect of Electrostatic Induction on Phase Change of Water Molecule via Dissipative Particle Dynamics Simulation
指導教授: 張榮語
Chang, Rong-Yu
口試委員: 吳建興
陳夏宗
黃世欣
許嘉翔
張榮語
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 64
中文關鍵詞: 耗散粒子動力學靜電感應行為Ewald summation水分子
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用耗散粒子動力學(Dissipative Particle Dynamics, DPD)模擬,為了擴大空間與時間的尺度,進而研究在介觀尺度下水分子的靜電感應行為 (Electrostatic Induction Behavior)。過去,關於靜電感應的勢能,在分子動力學上常利用Ewald Summation,因為可以避開在分子間的距離大於截斷半徑時,其靜電勢能會發散的問題。Ewald Summation應用在介觀系統耗散粒子動力學模擬時,在分子間距離為零時,其勢能會發生發散。直到近幾年,這個問題已經被解決。因此,本研究目的分為五部分:
    一、 Ewald summation系統的建立以及系統驗證。
    二、 從微觀到介觀,Ewald summation修正項的驗證。
    三、 建立Ewald summation在耗散粒子動力學模擬系統上。
    四、 擴散系統的建立以及系統驗證。
    五、 利用耗散粒子動力學,模擬介觀尺度下的水分子,了解其靜電感應行為,並且預測擴散係數。
    從最後結果,可以知道隨著部分電荷增加,擴散係數會降低。固定電荷下,隨著Nm加大,擴散係數也會遞減,原因是因為質量影響大過靜電力的影響。


    This research, use dissipative particle dynamics simulations,in order to expand the space and time scales,and study the water molecules in the mesoscale electrostatic induction behavior.In past,the electrostatic induction potential regular used Ewald summation,in order to avoid the molecular distance is greater than cut-off radius,the electrostatic potential energy will be divergent problems.Ewald Summation application to mesoscopic systems dissipative particle dynamics simulation,the distance between the molecules is zero,the potential divergence will occur.Until recent years,this problem has been resolved.Therefore,the purpose of this research is divided into five parts: I.Set up the Ewald summation system and verify system. II.From micro to meso,verify Ewald summation correction equation. III.Set up the Ewald summation in the dissipative particle dynamics simulation system. IV.Set up the Diffusion system and verify system. V.Use the dissipative particle dynamics simulation,understand the water molecules in the mesoscale electrostatic induction behavior and prediction the diffusion coefficient. From the result,Know increase the partial charge,the diffusion coefficient will decrease.Fixed charge,the Nm increase,the diffusion coefficient will decrease,because the mass impact is large than static electricity. Key words: Dissipative particle dynamics 、Ewald summation、Electrostatic induction、Water molecules

    摘要 I Abstract II 目錄 III 圖目錄 VI 表目錄 IX 第一章 序論 1 1.1 前言 1 1.2 研究目的與動機 3 第二章 文獻回顧 4 2.1耗散粒子動力學文獻回顧 4 2.2靜電力對耗散粒子動力學文獻回顧 5 第三章 研究方法 7 3.1 耗散粒子動力學基本理論 7 3.1.1 耗散粒子動力學的假設與模擬流程 8 3.1.2 運動方程式的數值方法 10 3.1.3 週期性邊界 11 3.2 耗散粒子動力學力場 14 3.2.1 軟球間作用力 14 3.3耗散粒子動力學的參數定義 17 3.4系統的控制 19 3.5程式加速方法 21 3.6性質統計 21 3.7靜電力的介紹 23 3.8 Ewald summation的介紹 24 第四章 模擬系統的驗證與架構 30 4.1 Ewald Summation驗證 30 4.1.1 Ewald Summation數學式驗證 30 4.1.2 Ewald Summation簡單粒子模擬系統 34 4.2 耗散粒子動力學模擬系統驗證 36 4.3 耗散粒子動力學靜電力模擬系統 37 4.3.1 靜電力修正項驗證 37 4.3.2 耗散粒子動力學靜電力系統 38 4.3.3 耗散粒子動力學靜電力擴散系統 39 第五章 結果與討論 41 5.1 Ewald Summation簡單粒子系統 41 5.2 耗散粒子動力學靜電力模擬系統 45 5.3 耗散粒子動力學擴散系統 47 5.3.1 擴散系統測試 47 5.3.2 系統粒子數測試 49 5.3.3 耗散粒子動力學擴散系統 50 第六章 結論與未來展望 61 6.1 結論 61 6.2 未來展望 62 參考文獻 63

    [1] P. J. Hoogerbrugge and J. M. V. A. Koelma, "Simulating Microscopic Hydrodynamic Phenomena with Dissipative Particle Dynamics.," Europhys. Lett., 155 (1992).
    [2] P. EspanoL and P. Warren, "Statistical Mechanics of Dissipative Particle Dynamics.," Europhys. Lett. 30, 191 (1995).
    [3] R. D. Groot and S. D. Stoyanov, "Mesoscopic Model for Colloidal Particles, Powders, and Granular Solids," Phys. Rev. E 78 (2008).
    [4] R. D. Groot, "Electrostatic Interactions in Dissipative Particle Dynamics—Simulation of Polyelectrolytes and Anionic Surfactants," J. Chem. Phys. 118, 11265 (2003).
    [5] R. D. Groot, "Mesoscopic Simulation of Polymer-Surfactant Aggregation," Langmuir 16, 7493 (2000).
    [6] R. D. Groot, T. J. Madden, and D. J. Tildesley, "On the Role of Hydrodynamic Interactions in Block Copolymer Microphase Separation," J. Chem. Phys. 110, 9739 (1999).
    [7] R. D. Groot and T. J. Madden, "Dynamic Simulation of Diblock Copolymer Microphase Separation," J. Chem. Phys. 108, 8713 (1998).
    [8] R. D. Groot and P. B. Warren, "Dissipative Particle Dynamics: Bridging the Gap between Atomistic and Mesoscopic Simulation," J. Chem. Phys. 107, 4423 (1997).
    [9] Z. Wu, Q. Cui, and A. Yethiraj, "A New Coarse-Grained Model for Water: The Importance of Electrostatic Interactions," J. Chem. Phys. 114, 10524 (2010).
    [10] 邱佑宗, "耗散粒子動力學計算方法簡介及應用," 工業材料 213 (2004).
    [11] G. M. Minerva, E. Mayoral, M. E. Velázquez, and J. Alejandreb, "Electrostatic Interactions in Dissipative Particle Dynamics Using the Ewald Sums," J. Chem. Phys. 125, 224107 (2006).
    [12] C. Ibergay, P. Malfreyt, and D. J. Tildesley, "Electrostatic Interactions in Dissipative Particle Dynamics: Toward a Mesoscale Modeling of the Polyelectrolyte Brushes," J. Chem. Theory Comput. 5, 3245 (2009).
    [13] S. Nose, "A Unified Formulation of the Constant Temperature Molecular Dynamics Methods," J. Chem. Phys. 81, 511 (1984).
    [14] M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (1991)
    [15] M. Kawata and U. Nagashima, "Particle Mesh Ewald Method for Three-Dimensional System with Two-Dimensional Periodicity," Chem. Phys. Lett. 340, 165 (2001).
    [16] A. Bro´dka, "Optical Parameter Values of the Ewald Method with Electrostatic Layer Correction for Coulomb Interactions in Slab Geometry," J. Mol. Struct. 792-793, 56 (2006).
    [17] I. C. Yeh and M. L. Berkowitza, "Ewald Summation for Systems with Slab Geometry," J. Chem. Phys. 111, 3155 (1999).
    [18] C. L. Brooks, B. M. Pettitt, and M. Karplus, "Structure and Energetic Effects of Truncating Long Ranged Interactions in Ionic and Polar Fluids," J. Chem. Phys. 83, 5897 (1985).
    [19] J. H. Haile, Molecular Dynamics Simulation (1991)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE