研究生: |
葉冠毅 Ya, Guan-Yi |
---|---|
論文名稱: |
以氯化鋁溶液塗佈於多晶矽背面鈍化太陽能電池背面以形成背部氧化鋁鈍化層之研究 Study of AlOx Passivation Layer Formed by AlCl3 Solution Coated on Rear Surface of Multicrystalline Silicon Solar Cell |
指導教授: |
王立康
Wang, Li-Karn |
口試委員: |
甘炯耀
Gan, Jon-Yiew 陳昇暉 Chen, Sheng-Hui |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2018 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 78 |
中文關鍵詞: | 太陽能電池 、鈍化層 |
外文關鍵詞: | solar, PERC |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來多晶矽太陽能電池(poly-silicon solar cell )效率的提升已經面臨了瓶頸,所以在提升太陽能電池效率的同時,降低成本也成為市場上的主流之一。同時,PERC(Passivated Emitter and Rear Cell)架構的太陽能電池也是矽晶太陽能電池市場的中流砥柱,所以,本實驗以較低成本的濕式化學沉積氧化鋁薄膜加上PERC架構作為實驗的主體架構。
本篇主要藉由量測少數載子生命週期數值來探討濕式化學沉積氧化鋁薄膜於背表面的鈍化效果。在少數載子生命週期討論的部分,主要是從多晶矽裸片和沉積氮化矽後的多晶矽兩大類為基底去量測少數載子生命週期,並以不同退火溫度、退火時間以及化學溶液的濃度去量測少數載子生命週期的數值去判斷鈍化效果。其中,雙面塗佈氧化鋁於多晶矽裸片的最佳少數載子生命週期參數為9.79 μs,以及沉積氮化矽後並以濕式化學沉積氧化鋁薄膜於背表面的最佳少數載子生命週期參數為53.32 μs;在實驗過程中發現,氧化鋁薄膜鈍化層在退火結束後,其鈍化效果會隨著時間的增加而衰減,導致少數載子生命週期的下降。
另一部分則是討論濕式化學沉積氧化鋁鈍化層對背部網狀式電極結構的影響,透過SEM 去觀察背部網狀式電極結構所生成的背電場(BSF, Back Surface Field)厚度檢視其所造成的影響;最後,找出最佳參數,其中最佳數據為效率13.64 %、填充因子F.F.為70 %。
Recently, polycrystalline silicon solar cells have been stranded at bottlenecks of improving the efficiency. Therefore, while improving the efficiency of solar cells, reducing costs has become one of the mainstream issues in the market. At the same time, solar cells with PERC (Passivated Emitter and Rear Cell) structures uphold an opportunity of efficiency improvement for the cell market. However, it is believed here that current manufacturing processes for PERC cells are still expensive, and the industry may need to have a cheaper method for this type of cell manufacturing.
To achieve the cost-effectiveness, we focus on the deposition of an important passivation layer for PERC cells. In this thesis, we investigate the passivation effect of wet chemically deposited aluminum oxide film on the back surface by measuring the lifetime of minority carriers. In the first part, we focus on measuring the lifetimes of polycrystalline silicon bare wafers, and the diffused and silicon-nitride deposited polycrystalline silicon wafers at different annealing temperature, annealing time, and concentration of chemical solution. We compare the lifetimes measured for these wafers wet chemically deposited with the chemical solution proposed here. Among them, the best minority carrier lifetime of coated bifacially aluminum oxide layer on polycrystalline silicon wafer is 9.79 μs, and the best minority carrier lifetime for wafers after diffused, silicon-nitride deposited on the front surface, and aluminum oxide film deposited on the back surface is 53.32 μs. In the experiment, it is found that after the annealing of the passivation layer of the aluminum oxide film, the lifetime will decrease slowly with time when exposed in the air, resulting in a decrease in the passivation effect.
The second part of this thesis is to discuss the effect of the wet chemically deposited aluminum oxide passivation layer on PERC-structured cells, by showing the back electric field (BSF) thickness generated by the rear grid electrode structure through SEM measurement, and the cell’s efficiency. The best cell’s efficiency for our study is 13.64 % with Voc=570.1 mV, Jsc=34.2 mA/cm2, and the F.F. =70 %.
[1] Shruti Sharma, Kamlesh Kumar Jain, and Ashutosh Sharma, “Solar cells: in
research and applications—a review,” Materials Sciences and Applications,
vol.6, pp. 2642-2644, 2015.
[2] D.M. Chapin, C.S. Fuller, and G.L. Pearson, “A new silicon p-n junction
photocell for converting solar radiation into electrical power,” Journal of Applied
Physics, vol.25, pp. 676-677, 1954.
[3] W. Sockley and H.J. Queisser, “Detailed balance limit of efficiency of p-n
junction solar cells,” Journal of Applied Physics, vol.32, pp. 510-519, 1961.
[4] https://www.prnasia.com/story/203264-1.shtml
[5] https://www.greentrade.org.tw/zh-hant/structure/filedl/37846/33955
[6] https://www.google.com.tw/url?sa=i&source=images&cd=&cad=rja&uact=8&v
ed=2ahUKEwiEnNmzwoveAhWDy7wKHf_8BVQQjRx6BAgBEAU&url=https
%3A%2F%2Fwww.slideshare.net%2F5045033%2Fss-2999040&psig=AOvVaw
1TZ5jEWBt6T4sy5l0KQ2kO&ust=1539798341273306
[7] http://www.nrel.gov/ncpv/images/efficiency_chart.jpg
[8] J. Zhao, A. Wang, and M.A. Green, “High-efficiency PERL and PERT silicon
solar cells on FZ and MCZ substrates,” Solar Energy Materials and Solar Cells,
vol.65, pp. 429-435, 2001.
72
[9] 林堅楊、林坤立,單晶矽太陽能電池製程及其頻譜響應之研究,國立雲林
科技大學電子工程所碩士班論文,西元 2012 年
[10] A.Morales-Acevedo, “The quantum collection efficiency of heavily doped
emitters in silicon solar cells,” Solar Cells, vol.28, pp. 293-300, 1990.
[11] J.A. del Alamo and R.M. Swanson, “The physics and modeling of heavily doped
emitters,” IEEE Transactions on Electron Devices, vol.31, pp. 1878-1888, 1984.
[12] J.A. del Alamo, and R.M. Swanson, “Modeling of minority-carrier transport in
heavily doped silicon emitters,” Solid-State Electronics, vol.30, pp. 1127-1136,
1987.
[13] H. Li, Y.C. Wang, J.J. Ji, R.L. Chen, Y.Q. Xu, A.J. Shao, C.X. Tong, and Z.R.
Shi, “Implementation of selective diffusion in large-scale production of mc-Si
solar cells,” in Proc.3rd Word Conf. PEVC, Osaka japan, vol.8, pp. 967-970,
2003.
[14] J. Müller, K. Both, S. Gatz, H. Plagwitz, G. Schubert, and R. Brendel, “Contact
formation and recombination at screen-printed local aluminum-alloy silicon solar
cell base contacts,” IEEE Transactions on Electron Device, vol.58, pp. 3239-
3245, 2011.
[15] J. Müller, K. Both, S. Gatz, H. Plagwitz, G. Schubert, and R. Brendel,
“Recombination at local aluminum-alloy silicon solar cell base contacts by
73
dynamic infrared lifetime mapping,” Energy Procedia, vol.8, pp. 521-526, 2011.
[16] J.S. Kim, J. Y. Lim, Y.H. Hwang, J.J. Cho, H.J. Choi, and E.J Lee, “Laser
ablation of aluminum oxide and silicon nitride rear-side passivation for i-PERC
cell,” Renewable Energy, vol.79, pp. 135-139, 2015.
[17] J.M. Kim and Y.K. Kim, “Saw-damage-induced structural defect on the surface
of silicon crystal,” Journal of The Electrochemical Society, vol.152, pp. 189-192,
2005.
[18] A.G. Aberle, “Surface passivation of crystalline silicon solar cells: a review,”
Progress In Photovoltaics: Research and Applications, vol.8, pp. 473-487, 2000.
[19] T. Lauinger, J. Schmidt, A.G. Aberle, and R. Hezel, “Record low surface
recombination velocities on 1 Ω cm p-silicon using remote plasma silicon nitride
passivation,” Applied Physics Letters, vol.68, pp. 1232-1234, 1996.
[20] B. Sopori and Y. Zhang, “H-diffusion mechanism(s) in PECVD nitride
passivation of si solar cells,” National Center for Photovoltaics and Solar 1st
Conference Program Review Meeting, vol.8, pp. 14-17, 2001.
[21] I. Martin, M. Vetter, A. Orpella, J. Puigdollers, A. Cuevas and R. Alcubilla,
“Surface passivation of p-type crystalline Si by plasma enhanced chemical vapor
deposited amorphous SiCx: H films,” Applied Physics Letters, vol.79, pp. 2199-
2201, 2001.
74
[22] S.K. Dhungel, J. Yoo, K. Kim, B. Karunagaran, H. Sunwoo, D. Mangalaraj, and
J. Yi, “Effect of pressure on surface passivation of silicon solar cell by forming
gas annealing,” Materials Science in Semiconductor Processing, vol.7, pp. 427-
431, 2004.
[23] V.D. Mihailetchi, Y. Komatsu, and L.J. Geerligs, “Nitric acid pretreatment for the
passivation of boron emitters for n-type base silicon solar cells,” Applied Physics
Letters, vol.92, pp. 063510.1-3, 2008.
[24] M. Tanaka, M. Taguchi, T. Matsuyama, T. Sawada, S. Tsuda, S. Nakano, H.
Hanafusa, and Y. Kuwano, “Development of new a-Si/c-Si heterojunction solar
cells: ACJ-HIT (artificially constructed junction-heterojunction with intrinsic
thin-layer),” Japanese Journal of Applied Physics, vol.31, pp. 3518-3522, 1992.
[25] M. Taguchi, K. Kawamoto, S. Tsuge, T. Baba, H. Sakata, M. Morizane, K.
Uchihashi, N. Nakamura, S. Kiyama and O. Oota, “HITTM cells - highefficiency crystalline Si cells with novel structure,” Progress in Photovoltaics:
Research and Applications, vol.8, pp. 503-513, 2000.
[26] B. Hoex, J.J.H. Gielis, E. Langereis, M.C.M. Van de Sanden, and W.M.M.
Kessels, “On the c-Si surface passivation mechanism by the negative-chargedielectric Al2O3,” Journal of Applied Physics, vol.104, pp. 113703(1-3), 2008.
[27] B. Hoex, S.B.S. Heil, E. Langereis, M.C.M. Van de Sanden and W.M.M.
75
Kessels, “Ultralow surface recombination of c-Si substrates passivated by
plasma-assisted atomic layer deposited Al2O3,” Applied Physics Letters, vol.89,
pp. 042112(1-3), 2006.
[28] J. Benick, B. Hoex, M.C.M. Van de Sanden, W.M.M. Kessels, O. Schultx, and S.
W. Glunz, “High efficiency n-type Si solar cells on Al2O3-passivated boron
emitters,” Applied Physics Letters, vol.92, pp. 253504(1-3), 2008.
[29] J. schmidt, A. Merkle, R. Brendel, B. Hoex, M.C.M. Van de Sanden, and
W.M.M. Kessels, “Suerface passivation of high-efficiency silicon colar cells by
atomic-layer-deposited Al2O3,” Progress in Photovoltaics: Research and
Applications, vol.16, pp. 461-466, 2008.
[30] B. Vermang, H. Goverde, L. Tous, A. Lorenz, P. Choulat, J. Horzel, J. Jhon, J.
Poortmans, and R. Mertens, “Approach for A2O3 rear surface passivation of
industrial p-type Si PERC above 19%,” Progress in Photovoltaics: Research and
Applications, vol.20, pp. 269-273, 2012.
[31] F. Werner, B. Veith, D. Zielke, L. Kühnemund, C. Tegenkamp, M. Seibt,
R. Brendel, and J. Schmidit, “Electronic and chemical properties of the c-Si/
Al2O3 interface,” Journal of Applied Physics, vol.109, pp. 113701(1-6), 2011.
[32] H. Park, S. Kwon, J.S. Lee, H.J. Lim, S. Yoon and D. Kim, “Improvement on
surface texturing of single crystalline silicon for solar cells by saw-damage
76
etching using an acid solution,” Solar Energy Materials & Solar Cells, vol.93,
pp. 1773-1778, 2009.
[33] http://ezphysics.nchu.edu.tw/prophys/condmatt/handouts/chap8semicon/semicon
d.pdf
[34] http://www2.nsysu.edu.tw/physdemo/2012/E4/E4.php
[35] 施敏、李明逵 著,曾俊元 譯,半導體元件物理與製作技術,交通大學出
版社,西元 2012 年
[36] http://www2.nsysu.edu.tw/IEE/lou/elec/web/process/semi.htm
[37] I. Tiginyanu, S. Langa, H. Foell, and V. Ursachi, Porous III-V Semiconductors,
onlinebook(www.porous-35.com/), 2009.
[38] 蕭宏,半導體製程技術導論,全華圖書,西元 2014 年
[39] https://www.researchgate.net/figure/Concept-of-Air-MassSpectrum7_fig3_259479658
[40] https://www.materialsnet.com.tw/DocView.aspx?id=7004
[41] http://blog.xuite.net/jesonchung/scienceview/93560463-
%E5%A4%AA%E9%99%BD%E8%83%BD%E9%9B%BB%E6%B1%A0%E7
%9A%84%E5%8E%9F%E7%90%86%E5%8F%8A%E8%A3%BD%E4%BD%
9C+%2C+Solar+cells+elements%2C+how+solar+cells+work.%28%E4%B8%A
D%E8%8B%B1%E6%96%87%E5%B0%8D%E7%85%A7%29
77
[42] http://web.nuu.edu.tw/~hsuch/download/solar%20cell%20devices%20process%
20technology1.pdf
[43] http://eportfolio.lib.ksu.edu.tw/user/T/0/T094000004/repository/%E5%BE%AE
%E6%B3%A2%E5%85%89%E9%9B%BB%E5%8D%8A%E5%B0%8E%E9%
AB%94/ch6.pdf
[44] M.A. Green 著,曹昭陽、狄大衛、李秀文譯,太陽電池工作原理,技術與
系統應用,五南圖書出版公司,西元 2009 年
[45] https://tayloredge.com/reference/Electronics/Photonics/HighEfficiencySolarCells
.pdf
[46] G. Agostinelli, A. Delabie, P. Vitanov, Z. Alexieva, H.F.W. Dekkers, S. De Wolf ,
and G. Beaucarne, “Very low surface recombination vlocities on p-type silicon
wafers passivated with a dielectric with fixed negative charge,” Solar Energy
Materials & Solar Cells, vol.90, pp. 3438-3443, 2006.
[47] S. Gajendra, A.Verma, and R. Jeyakumar, “Fabrication of c-Si solar cells using
boric acid as a spin-on dopant for back surface field,” Royal Society of
Chemistry Advances, vol.4, pp. 4225-4229, 2014.
[48] O.V. Roos, “A simple theory of back surface field (BSF) solar cells, ” Journal of
Applied Physics, vol.49, pp. 3503-3511, 1978.
[49] J.G. Fossum, “Physical operation of back-surface-field silicon solar cells, ” IEEE
78
Transactions on Electron Devices, vol.24, pp.322-325, 1977.
[50] J. Chen, Z. Hao, J. Tey, Z.R. Du, F. Lin, B. Hoex, and A.G.
Aberle, ”Investigation of screen-printed rear contacts for aluminum local back
surface field silicon wafer solar cells,” IEEE Journal of Photovoltaics, vol.3,
pp.690-696, 2013.
[51] 管鴻、楊茹媛、徐政傑、曾坤三、翁敏航,電子束蒸鍍不同奈米鋁膜厚度
對非晶矽誘發成多晶矽之微結構與載子移動率之影響,中國機械工程學會
第二十六屆全國學術研討會論文集,西元 2009 年
[52] https://www.sintoninstruments.com/products/wct-120