研究生: |
蔡鴻偉 Tsai, Hung Wei |
---|---|
論文名稱: |
V-VI, I-III-VI2, I2-II-IV-VI4硫族化合物半導體材料電化學合成 Electrochemical Syntheses of V-VI, I-III-VI2, I2-II-IV-VI4 Chalcogenide Semiconductors |
指導教授: |
闕郁倫
Chueh, Yu Lun |
口試委員: |
賴志煌
Lai, Chi Huang 廖建能 Liao, Chien Neng 沈昌宏 Shen, Chang Hong 呂宗昕 Lu, Chung Hsin |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2015 |
畢業學年度: | 104 |
語文別: | 英文 |
論文頁數: | 110 |
中文關鍵詞: | 碲化鉍 、碲奈米線 、銅銦鎵硒 、銅鋅錫硫 、電化學 |
外文關鍵詞: | Bismuth telluride, Tellurium nanowires, Copper indium gallium selenide, Copper zinc tin sulfide, Electrochemistry |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
電化學研究化學物質在電子轉移過程中,其電化學反應與反應電位的關係,因此,穩定且僅作為電子傳遞功用的熱裂解石墨和白金電極為常見電化學研究中的電極選擇。然而在大部份實際情況的電子轉移過程中,電極材料會與電解質中的化學物質相互作用反應。在本研究中,我們探討包含五六族碲化鉍、一三六族銅銦鎵硒及一二四六族銅鋅錫硫等三種硫族化合物半導體材料的電化學研究,並從中發展出四種技術簡述如下:
(i) 我們利用單步驟電化學蝕刻在碲化鉍塊材表面蝕刻出碲化鉍奈米片狀陣列結構,施加電壓的大小和時間可以控制碲化鉍奈米片狀陣列結構的間距和深度,分析碲化鉍奈米片狀的結果顯示為單晶的碲化鉍,平均厚度和電阻率為399.8 奈米和137.34 微歐姆⋅公尺。我們也提出了碲化鉍奈米片狀陣列結構的成長機制,並應用於量子點敏化太陽能電池,有著1.12%能源轉換效率表現。
(ii) 我們提出氣相-固相轉變生長機制且無介面活性劑輔助的合成方法合成碲奈米線,此單步驟電化學合成法在室溫下進行反應,合成出的碲奈米線沿著[001]的方向成長,平均直徑小於20奈米。此碲奈米線有著表面增顯拉曼散射效果,並在吸收光譜中於350-750奈米波長區間有吸收峰、螢光光譜中於400-700奈米波長區間有發射峰,可被直接應用當成p型摻雜劑於石墨烯電晶體上,也可作為超電容中的電極端應用。
(iii) 我們利用電化學方法進行銅銦鎵硒表面鈍化作用,使得銅銦鎵硒表面氧缺陷濃度的下降,並用變溫電性量測銅銦鎵硒太陽能電池元件表現,證實介面再復合作用的鈍化以及改善的電性翻轉情況。經由電化學表面鈍化作用處理後的銅銦鎵硒太陽能電池元件表現可從原先的4.7%能源轉換效率提升至7.7%。
(iv) 我們提出單步驟混合式電化學沉積法沉積銅鋅錫硫薄膜,此方法結合了電泳沉積和電鍍沉積兩種技術。初沉積的銅鋅錫硫薄膜成分原子百分比依序為25.33 at%、19.44 at%、14.56 at%、40.67 at%。經過一小時550度C的硫化處理後,X光繞射儀和拉曼光譜儀檢測出銅鋅錫硫薄膜有著鋅黃錫礦晶體結構的(112)、(220)、(312)X光繞射面和287 cm-1、338 cm-1拉曼A振動峰及374 cm-1拉曼B振動峰。光學吸收光譜量測出的銅鋅錫硫薄膜能階為1.48電子伏特,銅鋅錫硫太陽能電池元件表現則為350毫伏特的開路電壓、3.90毫安培每平方釐米的短路電流、0.43的填充因子及0.59 %的能源轉換效率。
Electrochemistry studies the electrons transfer of the chemical moieties in the electrolytic solution, thus, inert materials which only supply or withdraw electrons such as pyrolytic graphite and platinum are commonly used as the electrodes in the electroanalyses. However, in most of the cases, the materials we utilized for the working electrode are not as nonreactive as pyrolytic graphite or platinum, and will take place the chemical reactions during supplying or withdrawing electrons. We focused on investigating the chemical reaction between the chemical moieties in electrolytic solution and the working electrode materials including V-VI semiconductor of Bi2Te3, I-III-VI2 semiconductor of Cu(In,Ga)Se2, and I2-II-IV-VI4 semiconductor of Cu2ZnSnS4 and hence developed four kinds of techniques, as mentioned as follows:
(i) We demonstrate an one-step electrolysis process to directly form Bi2Te3 nanosheet arrays (NSAs) on the surface of Bi2Te3 bulk with controllable spacing distance and depth by tuning the applied bias and duration. The single sheet of NSAs reveals that the average thickness and electrical resistivity of single crystalline Bi2Te3 in composition are 399.8 nm and 137.34 μΩ⋅m, respectively. The formation mechanism and the selection rules of NSAs have been proposed. A 1.12 % energy conversion efficiency of quantum-dot-sensitized solar cells with Bi2Te3 NSAs as counter electrode has been demonstrated.
(ii) We propose a gas-solid transformation mechanism to synthesize surfactant-free tellurium nanowires with average diameter under 20 nm at room temperature by one-step electrochemical method. The tellurium nanowires grow along the [001] direction due to the unique spiral chains in crystal structure and show an enhanced Raman scattering effect, a broad absorption band over the range of 350-750 nm and an emission band over the range of 400-700 nm in photoluminescence spectrum. Besides, the tellurium nanowires are directly applied as p-type dopant to dope graphene and result in a right shift of Dirac point in graphene field-effect transistor. Finally, we apply these tellurium nanowires as a supercapacitor electrode and demonstrate their promising capacitive properties.
(iii) We introduce a surface modification on CIGSe thin film by electrochemical treatment. After this electrochemical passivation treatment, a lower oxygen concentration near the CIGSe surface was detected by XPS analysis. Temperature-dependent J-V characteristics of CIGSe solar cells reveal that the interface recombination can be suppressed and an improved rollover condition can be achieved. As a result, the defects near the CIGSe surface can be passivated by electrolysis and the performance of CIGSe solar cells can be enhanced from 4.7 % to 7.7 %.
(iv) We demonstrate a one-step hybrid electrodeposition method which combines electrophoretic and electroplated electrodeposition to synthesize CZTS thin film. To our best condition, the composition of the as-deposited CZTS thin film can be achieved to be ~25.33 at%, ~19.44 at%, ~14.56 at%, and ~40.67 at% for Cu, Zn, Sn, and S elements, respectively. After the 550°C sulfurization for 1 hour in a sulfur vapor atmosphere, three diffraction peaks corresponding to the (112), (220), and (312) planes of CZTS could be detected in XRD spectra. The A Raman-active vibration modes at 287, 338 cm-1 and B Raman-active vibration modes at 374 cm-1 could be identified as kesterite CZTS in Raman spectra. An appropriate optical property of 1.48 eV band gap is achieved for photovoltaic application. Through careful analysis and optimization, we are able to demonstrate CZTS solar cells with the VOC, JSC, FF and η of 350 mV, 3.90 mA/cm2, 0.43 and 0.59 %, respectively.
1. Heinze J. Electrochemistry, Principles, Methods, and Applications. Von C. M. A. Brett und A. M. O. Brett. Oxford University Press, Oxford, 1993. 427 S., Broschur 25.00 £. – ISBN 0-19-855388-9. Angewandte Chemie 1994;106(22):2441-2442.
2. Chen T, Guai GH, Gong C, Hu W, Zhu J, Yang H, Yan Q, Li CM. Thermoelectric Bi2Te3-improved charge collection for high-performance dye-sensitized solar cells. Energy & Environmental Science 2012;5(4):6294-6298.
3. Tu F, Xie J, Cao G, Zhao X. Self-Assembly of Bi2Te3-Nanoplate/Graphene-Nanosheet Hybrid by One-Pot Route and Its Improved Li-Storage Properties. Materials 2012;5(7):1275-1284.
4. Mehta RJ, Zhang Y, Karthik C, Singh B, Siegel RW, Borca-Tasciuc T, Ramanath G. A new class of doped nanobulk high-figure-of-merit thermoelectrics by scalable bottom-up assembly. Nat Mater 2012;11(3):233-240.
5. Balandin A, Wang KL. Effect of phonon confinement on the thermoelectric figure of merit of quantum wells. Journal of Applied Physics 1998;84(11):6149-6153.
6. Goyal V, Teweldebrhan D, Balandin AA. Mechanically-exfoliated stacks of thin films of Bi2Te3 topological insulators with enhanced thermoelectric performance. Applied Physics Letters 2010;97(13):133117-3.
7. Teweldebrhan D, Goyal V, Balandin AA. Exfoliation and Characterization of Bismuth Telluride Atomic Quintuples and Quasi-Two-Dimensional Crystals. Nano Letters 2010;10(4):1209-1218.
8. Ding Z, Viculis L, Nakawatase J, Kaner RB. Intercalation and Solution Processing of Bismuth Telluride and Bismuth Selenide. Advanced Materials 2001;13(11):797-800.
9. Qiu B, Ruan X. Thermal conductivity prediction and analysis of few-quintuple Bi2Te3 thin films: A molecular dynamics study. Applied Physics Letters 2010;97(18):183107-3.
10. Chen C-L, Chen Y-Y, Lin S-J, Ho JC, Lee P-C, Chen C-D, Harutyunyan SR. Fabrication and Characterization of Electrodeposited Bismuth Telluride Films and Nanowires. The Journal of Physical Chemistry C 2010;114(8):3385-3389.
11. Lee CJ, Lee TJ, Lyu SC, Zhang Y, Ruh H, Lee HJ. Field emission from well-aligned zinc oxide nanowires grown at low temperature. Applied Physics Letters 2002;81(19):3648-3650.
12. Duan X, Huang Y, Agarwal R, Lieber CM. Single-nanowire electrically driven lasers. Nature 2003;421(6920):241-245.
13. Saif Islam M, Sharma S, Kamins TI, Stanley Williams R. A novel interconnection technique for manufacturing nanowire devices. Applied Physics A 2005;80(6):1133-1140.
14. Tian B, Kempa TJ, Lieber CM. Single nanowire photovoltaics. Chemical Society Reviews 2009;38(1):16-24.
15. Oka K, Yanagida T, Nagashima K, Tanaka H, Kawai T. Nonvolatile Bipolar Resistive Memory Switching in Single Crystalline NiO Heterostructured Nanowires. Journal of the American Chemical Society 2009;131(10):3434-3435.
16. Ramgir NS, Yang Y, Zacharias M. Nanowire-Based Sensors. Small 2010;6(16):1705-1722.
17. Strehlow WH, Cook EL. Compilation of Energy Band Gaps in Elemental and Binary Compound Semiconductors and Insulators. Journal of Physical and Chemical Reference Data 1973;2(1):163-200.
18. Brown PJ, Forsyth JB. The Crystal Structure and Optical Activity of Tellurium. Acta Crystallographica Section A 1996;52(3):408-412.
19. Muhammad S, Xueying Z, Mutong N, Misbah M, Qing Z, Zhenxing W, Jinping Z, Lianfeng S, Jun H. Site-specific nucleation and controlled growth of a vertical tellurium nanowire array for high performance field emitters. Nanotechnology 2013;24(18):185705.
20. Cao J, Safdar M, Wang Z, He J. High-performance flexible supercapacitor electrodes based on Te nanowire arrays. Journal of Materials Chemistry A 2013;1(34):10024-10029.
21. Haisheng Q, Enbo Z, Shunji Z, Zhengquan L, Yong H, Changfa G, Xingyun Y, Liangchao L, Guoxiu T, Huichen G. One-pot synthesis of biocompatible Te@phenol formaldehyde resin core–shell nanowires with uniform size and unique fluorescent properties by a synergized soft–hard template process. Nanotechnology 2010;21(49):495602.
22. Lee TI, Lee S, Lee E, Sohn S, Lee Y, Lee S, Moon G, Kim D, Kim YS, Myoung JM and others. High-Power Density Piezoelectric Energy Harvesting Using Radially Strained Ultrathin Trigonal Tellurium Nanowire Assembly. Advanced Materials 2013;25(21):2920-2925.
23. Zhang G, Kirk B, Jauregui LA, Yang H, Xu X, Chen YP, Wu Y. Rational Synthesis of Ultrathin n-Type Bi2Te3 Nanowires with Enhanced Thermoelectric Properties. Nano Letters 2011;12(1):56-60.
24. Green MA, Emery K, Hishikawa Y, Warta W, Dunlop ED. Solar cell efficiency tables (Version 45). Progress in Photovoltaics: Research and Applications 2015;23(1):1-9.
25. Dullweber T, anna GH, Rau U, Schock HW. A new approach to high-efficiency solar cells by band gap grading in Cu(In,Ga)Se2 chalcopyrite semiconductors. Solar Energy Materials and Solar Cells 2001;67(1–4):145-150.
26. Jaffe JE, Zunger A. Anion Displacements and the Band-Gap Anomaly in Ternary ABC2 Chalcopyrite Semiconductors. Physical Review B 1983;27(8):5176-5179.
27. Chirilă A, Buecheler S, Pianezzi F, Bloesch P, Gretener C, Uhl AR, Fella C, Kranz L, Perrenoud J, Seyrling S and others. Highly efficient Cu(In,Ga)Se2 solar cells grown on flexible polymer films. Nat Mater 2011;10(11):857-861.
28. Rau U, Schmidt M. Electronic properties of ZnO/CdS/Cu(In,Ga)Se2 solar cells — aspects of heterojunction formation. Thin Solid Films 2001;387(1–2):141-146.
29. Kronik L, Burstein L, Leibovitch M, Shapira Y, Gal D, Moons E, Beier J, Hodes G, Cahen D, Hariskos D and others. Band diagram of the polycrystalline CdS/Cu(In,Ga)Se2 heterojunction. Applied Physics Letters 1995;67(10):1405-1407.
30. Repins I, Contreras MA, Egaas B, DeHart C, Scharf J, Perkins CL, To B, Noufi R. 19•9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81•2% fill factor. Progress in Photovoltaics: Research and Applications 2008;16(3):235-239.
31. Turcu M, Pakma O, Rau U. Interdependence of absorber composition and recombination mechanism in Cu(In,Ga)(Se,S) 2 heterojunction solar cells. Applied Physics Letters 2002;80(14):2598-2600.
32. Dullweber T, Rau U, Contreras MA, Noufi R, Schock H. Photogeneration and carrier recombination in graded gap Cu(In, Ga)Se2 solar cells. Electron Devices, IEEE Transactions on 2000;47(12):2249-2254.
33. Park JS, Dong Z, Kim S, Perepezko JH. CuInSe2 phase formation during Cu2Se/In2Se3 interdiffusion reaction. Journal of Applied Physics 2000;87(8):3683-3690.
34. Bär M, Klaer J, Weinhardt L, Wilks RG, Krause S, Blum M, Yang W, Heske C, Schock H-W. Cu2-xS Surface Phases and Their Impact on the Electronic Structure of CuInS2 Thin Films – A Hidden Parameter in Solar Cell Optimization. Advanced Energy Materials 2013;3(6):777-781.
35. Lehmann J, Lehmann S, Lauermann I, Rissom T, Kaufmann CA, Lux-Steiner MC, Bär M, Sadewasser S. Reliable wet-chemical cleaning of natively oxidized high-efficiency Cu(In,Ga)Se2 thin-film solar cell absorbers. Journal of Applied Physics 2014;116(23):233502.
36. Persson C. Electronic and optical properties of Cu2ZnSnS4 and Cu2ZnSnSe4. Journal of Applied Physics 2010;107(5):053710.
37. Suryawanshi MP, Agawane GL, Bhosale SM, Shin SW, Patil PS, Kim JH, Moholkar AV. CZTS based thin film solar cells: a status review. Materials Technology 2013;28(1/2):98-109.
38. Fleurial JP, Gailliard L, Triboulet R, Scherrer H, Scherrer S. Thermal properties of high quality single crystals of bismuth telluride—Part I: Experimental characterization. Journal of Physics and Chemistry of Solids 1988;49(10):1237-1247.
39. Szczech JR, Higgins JM, Jin S. Enhancement of the thermoelectric properties in nanoscale and nanostructured materials. Journal of Materials Chemistry 2011;21(12):4037-4055.
40. Belhadj M, Tadjer A, Abbar B, Bousahla Z, Bouhafs B, Aourag H. Structural, electronic and optical calculations of Cu(In,Ga)Se2 ternary chalcopyrites. physica status solidi (b) 2004;241(11):2516-2528.
41. Schnohr CS, Kämmer H, Stephan C, Schorr S, Steinbach T, Rensberg J. Atomic-scale structure and band-gap bowing in Cu(In,Ga)Se2. Physical Review B 2012;85(24):245204.
42. Boehnke UC, Kühn G. Phase relations in the ternary system Cu-In-Se. Journal of Materials Science 1987;22(5):1635-1641.
43. Singh UP, Patra SP. Progress in Polycrystalline Thin-Film Cu(In,Ga)Se2 Solar Cells. International Journal of Photoenergy 2010;2010.
44. Khare A, Himmetoglu B, Johnson M, Norris DJ, Cococcioni M, Aydil ES. Calculation of the lattice dynamics and Raman spectra of copper zinc tin chalcogenides and comparison to experiments. Journal of Applied Physics 2012;111(8):083707.
45. Song X, Ji X, Li M, Lin W, Luo X, Zhang H. A Review on Development Prospect of CZTS Based Thin Film Solar Cells. International Journal of Photoenergy 2014;2014:11.
46. Walsh A, Chen S, Wei S-H, Gong X-G. Kesterite Thin-Film Solar Cells: Advances in Materials Modelling of Cu2ZnSnS4. Advanced Energy Materials 2012;2(4):400-409.
47. Mohanty P, Kang T, Kim B, Park J. Synthesis of Single Crystalline Tellurium Nanotubes with Triangular and Hexagonal Cross Sections. The Journal of Physical Chemistry B 2006;110(2):791-795.
48. Tao H, Liu H, Qin D, Chan K, Chen J, Cao Y. High Mobility Field Effect Transistor from Solution-Processed Needle-Like Tellurium Nanowires. Journal of Nanoscience and Nanotechnology 2010;10(12):7997-8003.
49. Qian H-S, Yu S-H, Gong J-Y, Luo L-B, Fei L-f. High-Quality Luminescent Tellurium Nanowires of Several Nanometers in Diameter and High Aspect Ratio Synthesized by a Poly (Vinyl Pyrrolidone)-Assisted Hydrothermal Process. Langmuir 2006;22(8):3830-3835.
50. Colombara D, Crossay A, Vauche L, Jaime S, Arasimowicz M, Grand PP, Dale PJ. Electrodeposition of kesterite thin films for photovoltaic applications: Quo vadis? physica status solidi (a) 2015;212(1):88-102.
51. Richter W, Becker CR. A Raman and far-infrared investigation of phonons in the rhombohedral V2–VI3 compounds Bi2Te3, Bi2Se3, Sb2Te3 and Bi2(Te1−xSex)3 (0 < x < 1), (Bi1−ySby)2Te3 (0 < y < 1). physica status solidi (b) 1977;84(2):619-628.
52. Drabble JR, Goodman CHL. Chemical bonding in bismuth telluride. Journal of Physics and Chemistry of Solids 1958;5(1–2):142-144.
53. Huang B-L, Kaviany M. Ab initio and molecular dynamics predictions for electron and phonon transport in bismuth telluride. Physical Review B 2008;77(12):125209.
54. Kullmann W, Geurts J, Richter W, Lehner N, Rauh H, Steigenberger U, Eichhorn G, Geick R. Effect of Hydrostatic and Uniaxial Pressure on Structural Properties and Raman Active Lattice Vibrations in Bi2Te3. physica status solidi (b) 1984;125(1):131-138.
55. Engelhard T, Jones ED, Viney I, Mastai Y, Hodes G. Deposition of tellurium films by decomposition of electrochemically-generated H2Te: application to radiative cooling devices. Thin Solid Films 2000;370(1–2):101-105.
56. Torrie BH. Raman spectrum of tellurium. Solid State Communications 1970;8(22):1899-1901.
57. Goldsmid HJ. The Electrical Conductivity and Thermoelectric Power of Bismuth Telluride. Proceedings of the Physical Society 1958;71(4):633.
58. Tachan Z, Shalom M, Hod I, Rühle S, Tirosh S, Zaban A. PbS as a Highly Catalytic Counter Electrode for Polysulfide-Based Quantum Dot Solar Cells. The Journal of Physical Chemistry C 2011;115(13):6162-6166.
59. Yang Z, Chen C-Y, Liu C-W, Li C-L, Chang H-T. Quantum Dot–Sensitized Solar Cells Featuring CuS/CoS Electrodes Provide 4.1% Efficiency. Advanced Energy Materials 2011;1(2):259-264.
60. Sixto G, Iván M-S, Lorena M, Nestor G, Teresa L-V, Roberto G, Lina JD, Qing S, Taro T, Juan B. Improving the performance of colloidal quantum-dot-sensitized solar cells. Nanotechnology 2009;20(29):295204.
61. Seol M, Ramasamy E, Lee J, Yong K. Highly Efficient and Durable Quantum Dot Sensitized ZnO Nanowire Solar Cell Using Noble-Metal-Free Counter Electrode. The Journal of Physical Chemistry C 2011;115(44):22018-22024.
62. Mishra SK, Satpathy S, Jepsen O. Electronic structure and thermoelectric properties of bismuth telluride and bismuth selenide. Journal of Physics: Condensed Matter 1997;9(2):461.
63. Nagao J, Hatta E, Mukasa K. Evaluation of metal-Bi2Te3 contacts by electron tunneling spectroscopy. 1996 26-29 March 1996. p 404-407.
64. Tsai H-W, Wang T-H, Chan T-C, Chen P-J, Chung C-C, Yaghoubi A, Liao C-N, Diau EW-G, Chueh Y-L. Fabrication of large-scale single-crystal bismuth telluride (Bi2Te3) nanosheet arrays by a single-step electrolysis process. Nanoscale 2014;6(14):7780-7785.
65. Diguna LJ, Shen Q, Kobayashi J, Toyoda T. High efficiency of CdSe quantum-dot-sensitized TiO2 inverse opal solar cells. Applied Physics Letters 2007;91(2):023116-3.
66. Lee Y-L, Lo Y-S. Highly Efficient Quantum-Dot-Sensitized Solar Cell Based on Co-Sensitization of CdS/CdSe. Advanced Functional Materials 2009;19(4):604-609.
67. Lee H, Wang M, Chen P, Gamelin DR, Zakeeruddin SM, Grätzel M, Nazeeruddin MK. Efficient CdSe Quantum Dot-Sensitized Solar Cells Prepared by an Improved Successive Ionic Layer Adsorption and Reaction Process. Nano Letters 2009;9(12):4221-4227.
68. Pine AS, Dresselhaus G. Raman Spectra and Lattice Dynamics of Tellurium. Physical Review B 1971;4(2):356-371.
69. Cao L, Nabet B, Spanier JE. Enhanced Raman Scattering from Individual Semiconductor Nanocones and Nanowires. Physical Review Letters 2006;96(15):157402.
70. Werner M, Mehrer H, Siethoff H. Self-diffusion and antimony diffusion in tellurium. Journal of Physics C: Solid State Physics 1983;16(32):6185.
71. Mo M, Zeng J, Liu X, Yu W, Zhang S, Qian Y. Controlled Hydrothermal Synthesis of Thin Single-Crystal Tellurium Nanobelts and Nanotubes. Advanced Materials 2002;14(22):1658-1662.
72. Lin Z-H, Yang Z, Chang H-T. Preparation of Fluorescent Tellurium Nanowires at Room Temperature. Crystal Growth & Design 2007;8(1):351-357.
73. Liu J-W, Chen F, Zhang M, Qi H, Zhang C-L, Yu S-H. Rapid Microwave-Assisted Synthesis of Uniform Ultralong Te Nanowires, Optical Property, and Chemical Stability. Langmuir 2010;26(13):11372-11377.
74. Isomäki HM, Boehm Jv. Optical Absorption of Tellurium. Physica Scripta 1982;25(6A):801.
75. Du X, Skachko I, Barker A, Andrei EY. Approaching ballistic transport in suspended graphene. Nat Nano 2008;3(8):491-495.
76. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005;438(7065):197-200.
77. Lee C, Wei X, Kysar JW, Hone J. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science 2008;321(5887):385-388.
78. Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn J-H, Kim P, Choi J-Y, Hong BH. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009;457(7230):706-710.
79. Eda G, Fanchini G, Chhowalla M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nano 2008;3(5):270-274.
80. Liu H, Liu Y, Zhu D. Chemical doping of graphene. Journal of Materials Chemistry 2011;21(10):3335-3345.
81. Giovannetti G, Khomyakov PA, Brocks G, Karpan VM, van den Brink J, Kelly PJ. Doping Graphene with Metal Contacts. Physical Review Letters 2008;101(2):026803.
82. Michaelson HB. The work function of the elements and its periodicity. Journal of Applied Physics 1977;48(11):4729-4733.
83. Wang G, Zhang L, Zhang J. A review of electrode materials for electrochemical supercapacitors. Chemical Society Reviews 2012;41(2):797-828.
84. Tsai H-W, Yaghoubi A, Chan T-C, Wang C-C, Liu W-T, Liao C-N, Lu S-Y, Chen L-J, Chueh Y-L. Electrochemical synthesis of ultrafast and gram-scale surfactant-free tellurium nanowires by gas-solid transformation and their applications as supercapacitor electrodes for p-doping of graphene transistors. Nanoscale 2015;7(17):7535-7539.
85. Li X-L, Cao G-H, Feng C-M, Li Y-D. Synthesis and magnetoresistance measurement of tellurium microtubes. Journal of Materials Chemistry 2004;14(2):244-247.
86. Mayers B, Xia Y. Formation of Tellurium Nanotubes Through Concentration Depletion at the Surfaces of Seeds. Advanced Materials 2002;14(4):279-282.
87. Liu Z, Hu Z, Liang J, Li S, Yang Y, Peng S, Qian Y. Size-Controlled Synthesis and Growth Mechanism of Monodisperse Tellurium Nanorods by a Surfactant-Assisted Method. Langmuir 2003;20(1):214-218.
88. Lu Q, Gao F, Komarneni S. Biomolecule-Assisted Reduction in the Synthesis of Single-Crystalline Tellurium Nanowires. Advanced Materials 2004;16(18):1629-1632.
89. Zhao AW, Ye CH, Meng GW, Zhang LD, Ajayan PM. Tellurium nanowire arrays synthesized by electrochemical and electrophoretic deposition. Journal of Materials Research 2003;18(10):2318-2322.
90. Rincón C, Ramírez FJ. Lattice vibrations of CuInSe2 and CuGaSe2 by Raman microspectrometry. Journal of Applied Physics 1992;72(9):4321-4324.
91. Hegedus SS, Shafarman WN. Thin-film solar cells: device measurements and analysis. Progress in Photovoltaics: Research and Applications 2004;12(2-3):155-176.
92. Cao Q, Gunawan O, Copel M, Reuter KB, Chey SJ, Deline VR, Mitzi DB. Defects in Cu(In,Ga)Se2 Chalcopyrite Semiconductors: A Comparative Study of Material Properties, Defect States, and Photovoltaic Performance. Advanced Energy Materials 2011;1(5):845-853.
93. Topič M, Smole F, Furlan J. Examination of blocking current-voltage behaviour through defect chalcopyrite layer in ZnO/CdS/Cu(In,Ga)Se2/Mo solar cell. Solar Energy Materials and Solar Cells 1997;49(1–4):311-317.
94. Kronik L, Rau U, Guillemoles J-F, Braunger D, Schock H-W, Cahen D. Interface redox engineering of Cu(In,Ga)Se2 – based solar cells: oxygen, sodium, and chemical bath effects. Thin Solid Films 2000;361–362(0):353-359.
95. Kim K-W, Lee E-H, Choi I-K, Yoo J-H, Park H-S. Electrolysis of Nitric Acid by Using a Glassy Carbon Fiber Column Electrode System. Journal of Radioanalytical and Nuclear Chemistry 2000;245(2):301-308.
96. Solubilities of Inorganic and Organic Compounds. A compilation of quantitative solubility data from the periodical literature, by Atherton Seidell, Ph. D., Washington. Supplement to the second edition containing data published during the years 1917–1926 inclusive. D. van Nostrand Company, Inc., New York/Gauthier-Villars et Cie., Paris, 1928. 569 Seiten. Archiv der Pharmazie 1928;266(7):544c-544.
97. Kilic C, Zunger A. n-type doping and passivation of CuInSe2 and CuGaSe2 by hydrogen. Physical Review B 2003;68(7).
98. Chandrasekar MS, Pushpavanam M. Pulse and pulse reverse plating—Conceptual, advantages and applications. Electrochimica Acta 2008;53(8):3313-3322.
99. Yin X, Tang C, Sun L, Shen Z, Gong H. Study on Phase Formation Mechanism of Non- and Near-Stoichiometric Cu2ZnSn(S,Se)4 Film Prepared by Selenization of Cu–Sn–Zn–S Precursors. Chemistry of Materials 2014;26(6):2005-2014.
100. Redinger A, Berg DM, Dale PJ, Siebentritt S. The Consequences of Kesterite Equilibria for Efficient Solar Cells. Journal of the American Chemical Society 2011;133(10):3320-3323.
101. Weber A, Mainz R, Schock HW. On the Sn loss from thin films of the material system Cu–Zn–Sn–S in high vacuum. Journal of Applied Physics 2010;107(1):013516.
102. Scragg JJ, Kubart T, Wätjen JT, Ericson T, Linnarsson MK, Platzer-Björkman C. Effects of Back Contact Instability on Cu2ZnSnS4 Devices and Processes. Chemistry of Materials 2013;25(15):3162-3171.
103. Fernandes PA, Salomé PMP, da Cunha AF. Growth and Raman scattering characterization of Cu2ZnSnS4 thin films. Thin Solid Films 2009;517(7):2519-2523.
104. Delbos S. Kësterite thin films for photovoltaics : a review. EPJ Photovolt. 2012;3:35004.
105. Kumar V, Kr. Sharma S, Sharma TP, Singh V. Band gap determination in thick films from reflectance measurements. Optical Materials 1999;12(1):115-119.
106. Yoo H, Kim J, Zhang L. Sulfurization temperature effects on the growth of Cu2ZnSnS4 thin film. Current Applied Physics 2012;12(4):1052-1057.
107. Fernandes PA, Salomé PMP, Cunha AFd. A study of ternary Cu2SnS3 and Cu3 SnS4 thin films prepared by sulfurizing stacked metal precursors. Journal of Physics D: Applied Physics 2010;43(21):215403.
108. Pawar SM, Pawar BS, Moholkar AV, Choi DS, Yun JH, Moon JH, Kolekar SS, Kim JH. Single step electrosynthesis of Cu2ZnSnS4 (CZTS) thin films for solar cell application. Electrochimica Acta 2010;55(12):4057-4061.
109. Cui Y, Zuo S, Jiang J, Yuan S, Chu J. Synthesis and characterization of co-electroplated Cu2ZnSnS4 thin films as potential photovoltaic material. Solar Energy Materials and Solar Cells 2011;95(8):2136-2140.
110. Jeon M, Tanaka Y, Shimizu T, Shingubara S. Formation and characterization of single-step electrodeposited Cu2ZnSnS4 thin films: Effect of complexing agent volume. Energy Procedia 2011;10(0):255-260.
111. Pawar BS, Pawar SM, Gurav KV, Shin SW. Effect of Annealing Atmosphere on the Properties of Electrochemically Deposited Cu2ZnSnS4 (CZTS) Thin Films. ISRN Renewable Energy 2011.
112. Sambhaji MP, Bharati SP, Kishor VG, Do Won B, Se Han K, Sanjay SK, Jin Hyeok K. Fabrication of Cu2ZnSnS4 Thin Film Solar Cell Using Single Step Electrodeposition Method. Japanese Journal of Applied Physics 2012;51(10S):10NC27.
113. He X, Shen H, Wang W, Zhang B, Dai Y, Lu Y. Quaternary co-electrodeposition of the Cu2ZnSnS4 films as potential solar cell absorbers. Journal of Materials Science: Materials in Electronics 2013;24(2):572-575.
114. Ananthoju B, Kushwaha A, Sonia FJ, Aslam M. Structural and optical properties of electrochemically grown highly crystalline Cu2ZnSnS4 (CZTS) thin films. AIP Conference Proceedings 2013;1512(1):706-707.
115. Kornhuber K, Kavalakkatt J, Lin X, Ennaoui A, Lux-Steiner MC. In situ monitoring of electrophoretic deposition of Cu2ZnSnS4 nanocrystals. RSC Advances 2013;3(17):5845-5850.
116. Lee SG, Kim J, Woo HS, Jo Y, Inamdar AI, Pawar SM, Kim HS, Jung W, Im HS. Structural, morphological, compositional, and optical properties of single step electrodeposited Cu2ZnSnS4 (CZTS) thin films for solar cell application. Current Applied Physics 2014;14(3):254-258.
117. Slimani Tlemcani T, El Moursli FC, Taibi M, Hajji F, Benamar EB, Colis S, Schmerber G, Muller D, Slaoui A, Dinia A and others. One step electrodeposited CZTS thin films: Preparation and characterization. 2014 17-19 Oct. 2014. p 89-93.
118. Ananthoju B, Sonia FJ, Kushwaha A, Bahadur D, Medhekar NV, Aslam M. Improved structural and optical properties of Cu2ZnSnS4 thin films via optimized potential in single bath electrodeposition. Electrochimica Acta 2014;137(0):154-163.
119. Mkawi EM, Ibrahim K, Ali MKM, Farrukh MA, Mohamed AS. Influence of triangle wave pulse on the properties of Cu2ZnSnS4 thin films prepared by single step electrodeposition. Solar Energy Materials and Solar Cells 2014;130(0):91-98.
120. Ge J, Jiang J, Yang P, Peng C, Huang Z, Zuo S, Yang L, Chu J. A 5.5% efficient co-electrodeposited ZnO/CdS/ Cu2ZnSnS4/Mo thin film solar cell. Solar Energy Materials and Solar Cells 2014;125(0):20-26.