研究生: |
陳文祺 Chen, Wen-Chi |
---|---|
論文名稱: |
兩個Nd:YVO4雷射腔中產生表面發射型的連續波太赫茲雷射 Surface-Emitting Continuous-Wave THz Intracavity Radiation in Two Nd:YVO4 Lasers |
指導教授: |
黃衍介
Huang, Yen-Chieh |
口試委員: |
陳彥宏
Chen, Yen-Hung 卓俊佑 Cho, Chun-Yu |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2024 |
畢業學年度: | 113 |
語文別: | 英文 |
論文頁數: | 105 |
中文關鍵詞: | 雷射 、兆赫波 、非線性光學 、腔內光源 、法布里-勃羅干涉儀 |
外文關鍵詞: | Laser, THz Radiation, Nonlinear Optics, Intracavity Source, Etalon |
相關次數: | 點閱:37 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究光學差頻產生(DFG)和極化子散射(SPS)在5%摻雜濃度的 摻鎂鈮酸鋰(5% 〖MgO:LiNbO〗_3)中產生連續波(CW)之太赫茲 (THz)輻射的實驗。為了達到能激發上述兩種非線性光學的強度,設計成由雷射腔內的高強度共振光來產生太赫茲輻射。極化子散射太赫茲中之基本(fundamental)波和斯托克(Stokes)波分別是由使用 0.2% 和 0.25% 摻雜濃度的摻釹釩酸釔(〖Nd:YVO〗_4)作為雷射晶體的雷射腔生成,兩個雷射腔的雷射波長分別為1064.2 nm和1072.6 nm並且以一個相位匹配角對齊,兩個腔體產生了數瓦的腔內功率. 本論文的實驗緊湊地建構了一個斯托克雷射腔,而不僅僅是一個共振腔。高功率的斯托克波可以指數性地放大太赫茲輻射。透過焦電式光感測器和鎖相放大器的測量,測量之連續太赫茲波的輻射功率達到奈瓦(nW)等級。
本論文也呈現了設計這兩個高品質因子(Q-factor)之雷射腔的步驟,第一個是利用腔體震盪法(CRD)去測量三個超高反射率鏡子的反射率。第二個則是研究團隊設計的法布立-佩羅標準具(etalon),它的自由光譜範圍(FSR,40 nm)、透射率(約100%)和適當的半高全寬(FWHM,10.5 nm),在本論文中證明能夠從釹摻雜(Nd^(3+))的雷射晶體選擇1064.2或1070.5 – 1073.4nm的共振波長。最後,經過電腦運算設計了抗反射次波長光柵(AR SWG)的耦合器,讓太赫茲從矽基板穿透至空氣中的穿透率達到近100%,而該次波長光柵僅需在矽基板加工出次波長大小的微結構,不需複雜、困難的光學鍍膜技術。
This study investigates the potential for continuous-wave (CW) terahertz (THz) radiation generation through optical difference-frequency generation (DFG) and stimulated polariton scattering (SPS) in 5% MgO-doped lithium niobate (LiNbO₃). An intracavity configuration is implemented to facilitate high-intensity laser-induced nonlinear optical (NLO) processes. Two Nd:YVO₄ laser crystals, doped at 0.2% and 0.25%, are placed in two separate laser cavities to generate the fundamental and Stokes waves, respectively. The resonant wavelengths in the two cavities are 1064.2 nm and 1072.6 nm. These cavities are precisely aligned according to the phase-matching angle for SPS in LiNbO₃. The dual lasers generate several watts of intracavity power, providing a strong pump and Stokes field, subsequently enabling THz-wave emission through DFG. The CW THz radiation power, on the nanowatt (nW) scale, is detected using a pyroelectric detector and lock-in amplifier.
To generate a strong intracavity power, this thesis constructs the two low-loss laser cavities. Various strategies have been developed to address this challenge. First, a cavity ring-down (CRD) experiment is used to measure the mirror reflectivity of supermirrors (R > 99.5%). Second, an intracavity etalon is incorporated to select the precise wavelength of the Stokes wave. A custom-designed etalon with a high free spectral range (FSR) of 40 nm, near 100% transmission peak, and a full width at half maximum (FWHM) of 10.5 nm successfully selects the resonant mode between 1064.2 nm and 1070.5–1073.4 nm in the Nd³⁺ gain crystal. Lastly, a computationally designed optical microstructure, specifically an anti-reflection (AR) sub-wavelength grating (SWG), enhances THz radiation coupling from a silicon substrate to air. The SWG achieves near 100% transmission with simple periodic grating fabrication, eliminating the need for complex optical coatings at THz wavelengths.
1. Crocker, A., et al., Stimulated Emission in the Far Infra-Red. Nature, 1964. 201(4916): p. 250-251.
2. Lee, A.J. and H.M. Pask, Continuous wave, frequency-tunable terahertz laser radiation generated via stimulated polariton scattering. Optics Letters, 2014. 39(3): p. 442-445.
3. Wang, P.C., Singe- and two-color laser generation from etalon-out-coupled Nd:YVO4 / Nd:GdVO4 laser, in Institute of Photonics Technology. 2015, National Tsing Hua University: https://hdl.handle.net/11296/c4cja4.
4. Hercher, M., Tunable Single Mode Operation of Gas Lasers Using Intracavity Tilted Etalons. Applied Optics, 1969. 8(6): p. 1103-1106.
5. Shayeganrad, G., Y.C. Huang, and L. Mashhadi, Tunable single and multiwavelength continuous-wave c-cut Nd:YVO4 laser. Applied Physics B, 2012. 108(1): p. 67-72.
6. To, B.-D., M.-H. Wu, and Y.-C. Huang, Dark-line laser. Optics Letters, 2020. 45(23): p. 6430-6433.
7. Bahaa E. A. Saleh, M.C.T., Resonator Optics, in Fundamentals of Photonics. 1991. p. 310-341.
8. Bahaa E. A. Saleh, M.C.T., Laser Amplifiers, in Fundamentals of Photonics. 1991. p. 460-493.
9. Bahaa E. A. Saleh, M.C.T., Lasers, in Fundamentals of Photonics. 1991. p. 494-541.
10. Kostić, S., et al., Study of structural and optical properties of YAG and Nd:YAG single crystals. Materials Research Bulletin, 2015. 63: p. 80-87.
11. Xin Miao, Z., et al., Femtosecond ultraviolet laser pulse induced lightning discharges in gases. IEEE Journal of Quantum Electronics, 1995. 31(3): p. 599-612.
12. Ujager, F., S.M.H. Zaidi, and U. Younis, A review of semiconductor lasers for optical communications. 2010. 107-111.
13. Faist, J., Quantum Cascade Lasers. 2013: Oxford University Press.
14. Qi, Y., et al., Nd:YAG ceramic laser obtained high slope-efficiency of 62% in high power applications. Optics Express, 2005. 13(22): p. 8725-8729.
15. Berger, V., Second-harmonic generation in monolithic cavities. Journal of the Optical Society of America B, 1997. 14(6): p. 1351-1360.
16. Fukushima, T., et al., Selective excitation of lowest-order transverse ring modes in a quasi-stadium laser diode. Optics Letters, 2013. 38(20): p. 4158-4161.
17. Kuo, C.-H., et al., High-resolution imaging enabled by 100-kW-peak-power parametric source at 5.7 THz. Scientific Reports, 2023. 13(1): p. 5843.
18. Murate, K. and K. Kawase, Perspective: Terahertz wave parametric generator and its applications. Journal of Applied Physics, 2018. 124: p. 160901.
19. Unferdorben, M., et al., Measurement of Refractive Index and Absorption Coefficient of Congruent and Stoichiometric Lithium Niobate in the Terahertz Range. Journal of Infrared, Millimeter, and Terahertz Waves, 2015. 36(12): p. 1203-1209.
20. Mølster, K.M., et al., Time-domain spectroscopy of KTiOPO4 in the frequency range 0.6–7.0 THz. OSA Continuum, 2019. 2(12): p. 3521-3538.
21. Gatesman, A.J., et al., An anti-reflection coating for silicon optics at terahertz frequencies. IEEE Microwave and Guided Wave Letters, 2000. 10(7): p. 264-266.
22. Park, M.S., Y. Lee, and J.K. Kim, One-Step Preparation of Antireflection Film by Spin-Coating of Polymer/Solvent/Nonsolvent Ternary System. Chemistry of Materials, 2005. 17(15): p. 3944-3950.
23. Wang, J., et al., Preparation and Optical Properties of TiO 2 -SiO 2 thin films by Sol-gel Dipping Method. IOP Conference Series: Earth and Environmental Science, 2019. 310: p. 042029.
24. Huang, Y., et al., Improvement in THz light extraction efficiencies with antireflection subwavelength gratings on a silicon prism. Japanese Journal of Applied Physics, 2021. 60(SC): p. SCCL04.
25. Sakurai, H., et al., Terahertz broadband anti-reflection moth-eye structures fabricated by femtosecond laser processing. OSA Continuum, 2019. 2(9): p. 2764-2772.
26. Brückner, C., et al., Broadband antireflective structures applied to high resistive float zone silicon in the THz spectral range. Optics Express, 2009. 17(5): p. 3063-3077.
27. Tian, J., et al., All-dielectric KTiOPO4 metasurfaces based on multipolar resonances in the terahertz region. Optics Express, 2017. 25(20): p. 24068-24080.
28. Nowack, T.S., et al., Terahertz polarimetry with a monolithic metasurface. Optics Letters, 2022. 47(16): p. 4199-4202.
29. Ye, M., V. Ray, and Y. Yi, Achromatic Flat Subwavelength Grating Lens Over Whole Visible Bandwidths. IEEE Photonics Technology Letters, 2018. PP: p. 1-1.
30. Hora, H., Y. R. Shen, The Principles of Nonlinear Optics, John Wiley & Sons, New York, 1984, 576 pages. Laser and Particle Beams, 1986. 4(2): p. 318-319.
31. Liu, Y., et al., Optical Terahertz Sources Based on Difference Frequency Generation in Nonlinear Crystals. Crystals, 2022. 12(7): p. 936.
32. Byer, R., Nonlinear Optical Phenomena and Materials. Annual Review of Materials Science, 2003. 4: p. 147-190.
33. Lee, A.J., D.J. Spence, and H.M. Pask, Terahertz sources based on stimulated polariton scattering. Progress in Quantum Electronics, 2020. 71: p. 100254.
34. Coutts, D.W., LASERS | Metal Vapor Lasers, in Encyclopedia of Modern Optics, R.D. Guenther, Editor. 2005, Elsevier: Oxford. p. 460-467.
35. Bai, Y., Pumping wavelength related population inversion in Nd:doped laser. AIP Advances, 2020. 10: p. 105309.
36. Kaminskii, A., Crystalline Lasers - Physical Processes and Operating Schemes. 1st Edition ed. 1996, Taylor & Francis Group Logo. 592.
37. Sato, Y. and T. Taira, Spectroscopic Properties of Neodymium-Doped Yttrium Orthovanadate Single Crystals with High-Resolution Measurement. Japanese Journal of Applied Physics, 2002. 41(10R): p. 5999.
38. Richter, W., K. Thyagarajan, and A. K. Ghatak, Lasers—Theory and Applications (Plenum Press, New York and London, 1981), XII, 431 p. 39.50$. Laser and Particle Beams, 1983. 1(2): p. 217-218.
39. Feng, S. and H.G. Winful, Physical origin of the Gouy phase shift. Optics Letters, 2001. 26(8): p. 485-487.
40. ; Available from: http://www.optique-ingenieur.org/.
41. Bahaa E. A. Saleh, M.C.T., Photons and Atoms, in Fundamentals of Photonics. 1991. p. 423-459.
42. Precision Photonics Corporation, U.o.S.D. Basic Physics and Design of Etalons. Available from: https://home.sandiego.edu/~severn/p480w/design_of_etalons.pdf.
43. Harvey, K.C. and C.J. Myatt, External-cavity diode laser using a grazing-incidence diffraction grating. Optics Letters, 1991. 16(12): p. 910-912.
44. Kobtsev, S. and N. Sventsitskaya, Application of birefringent filters in continuous-wave tunable lasers: a review. Optics and Spectroscopy - OPT SPECTROSC, 1992. 73: p. 114-123.
45. Waritanant, T. and A. Major, Dual-wavelength operation of a diode-pumped Nd:YVO4 laser at the 1064.1 & 1073.1 nm and 1064.1 & 1085.3 nm wavelength pairs. Applied Physics B, 2018. 124(5): p. 87.
46. Fan, T.Y. and R.L. Byer, Diode laser-pumped solid-state lasers. IEEE Journal of Quantum Electronics, 1988. 24(6): p. 895-912.
47. Tan, Y., et al., Simultaneous dual-wavelength lasers at 1064 and 1342 nm in femtosecond-laser-written Nd:YVO4 channel waveguides. Journal of the Optical Society of America B, 2011. 28(7): p. 1607-1610.
48. Du, C., et al., High-power intracavity second-harmonic generation of 1.34 μm in BiB3O6 crystal. Optics Express, 2005. 13(21): p. 8591-8595.
49. Sridhar, G., et al., Cavity ring-down technique for measurement of reflectivity of high reflectivity mirrors with high accuracy. PRAMANA c Indian Academy of Sciences, 2010. 757960.
50. Moharam, M.G., et al., Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings. Journal of the Optical Society of America A, 1995. 12(5): p. 1068-1076.
51. Lalanne, P. and D. Lemercier-Lalanne, Depth dependence of the effective properties of subwavelength gratings. Journal of the Optical Society of America A, 1997. 14(2): p. 450-459.
52. Rytov, S.M. Electromagnetic Properties of a Finely Stratified Medium. 2014.
53. Sussman, S.S. Tunable Light Scattering from Transverse Optical Modes in Lithium Niobate. 1970.
54. Jose, A.A., et al., Low-temperature terahertz absorption measurements and polariton laser gain modelling for 5 mol% MgO:LiNbO3. Optical Materials Express, 2022. 12(11): p. 4499-4505.
55. Chen, J.-R., LED-Pumped Nd:YAG Laser Amplifier and Oscillator. 2023.
56. Wu, X., et al., Temperature dependent refractive index and absorption coefficient of congruent lithium niobate crystals in the terahertz range. Optics Express, 2015. 23: p. 29729.
57. Jiang, Y., et al., External cavity terahertz quantum cascade laser sources based on intra-cavity frequency mixing with 1.2–5.9 THz tuning range. Journal of Optics, 2014. 16: p. 094002.
58. COMSOL Multiphysics® software.
59. Risk, W.P., T. Gosnell, and A. Nurmikko, Compact Blue-Green Lasers. Compact Blue-Green Lasers, by W. P. Risk and T. R. Gosnell and A. V. Nurmikko, pp. 552. ISBN 0521623189. Cambridge, UK: Cambridge University Press, January 2003., 2003.