研究生: |
朱麗芬 Chu, Li-Fen |
---|---|
論文名稱: |
有機單雙極性場效電晶體與邏輯應用電路研究 Realization of the Logic Circuit through Organic Unipolar and Ambipolar Field-Effect Transistors |
指導教授: |
吳孟奇
Wu, Meng-Chyi 朱治偉 Chu, Chih-Wei |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 87 |
中文關鍵詞: | 有機 、電晶體 、雙極性 |
外文關鍵詞: | organic, transistor, ambipolar |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
多數有機材料皆以熱蒸鍍方式去製作有機場效電晶體,為了能夠簡化製程降低成本及實現可撓性軟性電子的應用,有機材料若透過低溫溶劑塗佈方式將使未來更有發展性。本論文中,利用旋轉塗佈製程技術,成功的實現低成本且可撓性電晶體。不僅製作單載子傳輸之N型電晶體於軟性基板上,透過電性量測及物性分析加以討論;另外還有透過不同比例濃度混合N型及P型有機半導體材料於溶劑中,以旋塗式製作有機雙極性薄膜電晶體,並且針對其現象做一連串探討研究。
有機電子元件應用於邏輯電路上,我們透過串接N型及P型有機薄膜電晶體來實現低功率消耗的互補性電晶體電路。另外為了有效率整合有機積體電路,透過單層有機薄膜即能夠同時擁有電子傳輸及電洞傳輸,以此來完成互補性反相器電路的操作,在這同時一樣是利用低溫溶劑製程方式。在本文中有機雙載子注入電晶體是透過混合適當的Poly(3-hexylthiophene) 以及 fullerene來達到平衡的雙載子傳輸的特性。本文最後亦有相關的延伸,透過使用高介電常數的氧化物當介電層,來完成低電壓驅動的電晶體及其邏輯電路。
A large number of organic materials have to be deposited by thermal evaporation for the fabrication of organic field-effect transistors. In order to realize the low-cost and flexible electronic with various thin-film transistor application, the organic materials need to be deposited by solution processing for the fabrication of polymer field-effect transistors. In this thesis, the low cost and flexible device of field-effect transistors have been fabricated by spin coating. We not only fabricate and investigate the unipolar transport of the organic field-effect transistor on flexible substrates using solution processing, but also fabricate and investigate the bipolar transport of the organic field-effect transistor using solution processing by blending two organic materials.
For the logic circuit application, we have demonstrated the complementary transistor circuits which comprised p-type and n-type transistor and utilized low-power consumption. Also, for the design of efficient organic integrated circuits, there is an urgent need for complementary technology, where both n-type and p-type transistor operation is realized in a single layer, while maintaining the attractiveness of easy solution processing. We demonstrate, by using solution-processed field-effect transistors, that hole transport and electron transport are both generic properties of organic semiconductors. Ambipolar field-effect transistor devices were fabricated through solution processing, mixtures of p-type and n-type semiconductors Poly (3-hexylthiophene) and fullerene providing balanced ambipolar characteristics with high hole and electron mobilities.
Finally, we also implemented the low-voltage operation inverter though using the high-k metal oxides as gate insulators.
[1] A. Tsumura, H. Koezuka, and T. Ando, " Macromolecular electronic devices: Field-effect transistor with a polythiophene thin film, " Appl. Phys. Lett. 2002, 49.
[2] C. D. Dimitrakopoulos, D. J. Mascaro, " Organic thin-film transistors: a review of recent advances, " IBM J. Res. Dev, 2001, 45, 11.
[3] J. M. Shaw, P. F. Seidler, Guest Editors, " Organic electronics: Introduction, " IBM J. Res. Dev, 2001, 45, 3.
[4] G. Horowitz, P. Lang, W. Kalb, M. Mottaghi, A. Roumyantseva, and A. Yassar, "Organic Field-Effect Transistors with Self-Assembled Monolayers, " Proc. Int. Symp. Super-Functionality Organic Devices, IPAP Conf. Series 6 pp.125-129
[5] From Wikipedia, the free encyclopedia. http://en.wikipedia.org/wiki/Atomic_force_microscope.
[6] C. D. Dimitrakopoulos, P. R. L. Malenfant, "Organic Thin Film Transistors for Large Area Electronics," Adv. Mater. 2002, 14, 99.
[7] H. Sirringhaus, "Device Physics of Solution-Processed Organic Field-Effect Transistors," Adv. Mater. 2005, 17, 2411.
[8] A. Facchetti, Mater. Today 2007, 10, 28.
[9] B. Yoo, B. A. Jones, D. Basu, D. Fine, T. Jung, S. Mohapatra, A. Facchetti, K. Dimmler, M. R. Wasielewski, T. J. Marks, A. Dodabalapur, "High-Performance Solution-Deposited n-Channel Organic Transistors and their Complementary Circuits," Adv. Mater. 2007, 19, 4028.
[10] Y. L. Wu, P. Liu, B. S. Ong, "Organic thin-film transistors with poly(methyl silsesquioxane) modified dielectric interfaces, " Appl. Phys. Lett. 2006, 89, 013505.
[11] P. T. Herwig, K. Mullen, "A Soluble Pentacene Precursor: Synthesis, Solid-State Conversion into Pentacene and Application in a Field-Effect Transistor, " Adv. Mater. 1999, 11, 480.
[12] R. Haddon, A. Perel, R. Morris, T. Palstra, A. Hebard, R. Fleming, "C60 thin film transistors, " Appl. Phys. Lett. 1995, 67, 121.
[13] T. D. Anthopoulos, B. Singh, N. Marjanovic, N. S. Sariciftci, A. M. Ramil, H. Sitter, M. Colle, D. M. de Leeuw, "High performance n-channel organic field-effect transistors and ring oscillators based on C60 fullerene films, " Appl. Phys. Lett. 2006, 89, 213504.
[14] X. H. Zhang, B. Kippelen, "High-performance C60 n-channel organic field-effect transistors through optimization of interfaces, " J. Appl. Phys. 2008, 104, 104504.
[15] X. H. Zhang, B. Kippelen, "Low-voltage C60 organic field-effect transistors with high mobility and low contact resistance, " Appl. Phys. Lett. 2008, 93, 133305.
[16] T. Morita, W. Takashima, K. Kaneto, Jpn. J. Appl. Phys. 2007, 46, L256.
[17] C. Waldauf, P. Schilinsky, M. Perisutti, J. Hauch, C. J. Brabec, "Solution-Processed Organic n-Type Thin-Film Transistors, " Adv. Mater. 2003, 15, 2084.
[18] G. Yu, J. Gao, J. Hummelen, F. Wudl, A. Heeger, "Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions, "Science 1995, 270, 1789.
[19] M. Chikamatsu, S. Nagamatsu, Y. Yoshida, K. Saito, K. Yase, K. Kikuchi, "Solution-processed n-type organic thin-film transistors with high field-effect mobility, "Appl. Phys. Lett. 2005, 87, 203504.
[20] R. Ruoff, D. Tse, R. Malhotra, D. Lorents, "Solubility of fullerene (C60) in a variety of solvents," J. Phys. Chem. 1993, 97, 3379.
[21] N. Sivaraman, R. Dhamodaran, I. Kaliappan, T. Srinivasan, P. Rao, C. Mathews, " Solubility of C60 in organic solvents, " J. Org. Chem. 1992, 57, 6077.
[22] L. L. Chua, J. Zaumseil, J. F. Chang, E. C. W. Ou, P. K. H. Ho, H. Sirringhaus, R. H. Friend, " General observation of n-type field-effect behaviour in organic semiconductors, " Nature 2005, 434, 194.
[23] J. Jang, J. W. Kim, N. Park, J. J. Kim, " General observation of n-type field-effect behaviors in organic semiconductors , " Org. Electron. 2008, 9, 481.
[24] F. C. Chen, C. H. Liao, "Improved air stability of n-channel organic thin-film transistors with surface modification on gate dielectrics, "Appl. Phys. Lett. 2008, 93, 103310.
[25] C. W. Chu, V. Shrotriya, G. Li, Y. Yang, "Tuning acceptor energy level for efficient charge collection in copper-phthalocyanine-based organic solar cells, "Appl. Phys. Lett. 2006, 88, 153504.
[26] S. M. Sze, Physics of Semiconductors, John Wiley and Sons, New York, 1981.
[27] H. Yan, Y. Zheng, R. Blache, C. Newman, S. F. Lu, J. Woerle, A. Facchetti, "Solution Processed Top-Gate n-Channel Transistors and Complementary Circuits on Plastics Operating in Ambient Conditions, " Adv. Mater. 2008, 20, 3393.
[28] Z. M. Wang, C. Kim, A. Facchetti, T. J. Marks, " Anthracenedicarboximides as Air-Stable N-Channel Semiconductors for Thin-Film Transistors with Remarkable Current On-Off Ratios, "J. Am. Chem. Soc. 2007, 129, 13362.
[29] M. Chikamatsu, A. Itakura, Y. Yoshida, R. Azumi, K. Yase, " High-Performance n-Type Organic Thin-Film Transistors Based on Solution-Processable Perfluoroalkyl-Substituted C60 Derivatives, " Chem. Mater. 2008, 20, 7365.
[30] F. Dinelli, M. Murgia, F. Biscarini, D. M. De Leeuw, " Thermal annealing effects on morphology and electrical response in ultrathin film organic transistors, " Synth. Metals, 2004, 146, 373.
[31] M. M. Ling, P. Erk, M. Gomez, M. Koenemann, J. Locklin, Z. Bao, " Air-Stable n-Channel Organic Semiconductors Based on Perylene Diimide Derivatives without Strong Electron Withdrawing Groups, " Adv. Mater. 2007, 19, 1123.
[32] Th. B. Singh, S. Günes, N. Marjanovi, N. S. Sariciftci, "Correlation between morphology and ambipolar transport in organic field-effect transistors, " J. Appl. Phys. 2005, 97, 114508.
[33] J. Zhang, C. M. Li, M. B. Chan-Park, Q. Zhou, Y. Gan, F. Qin, B. Ong, T. Chen, " Fabrication of thin-film organic transistor on flexible substrate via ultraviolet transfer embossing, " Appl. Phys. Lett. 2007, 90, 243502.
[34] H. Klauk, M. Halik, U. Zschieschang, F. Eder, G. Schmid, C. Dehm, " Pentacene organic transistors and ring oscillators on glass and on flexible polymeric substrates, " Appl. Phys. Lett. 2003, 82, 4175.
[35] L. Torsi, A. Dodabalapur, L. J. Rothberg, A. W. P. Fung, H. E. Katz, "Intrinsic Transport Properties and Performance Limits of Organic Field-Effect Transistors, " Science 1996, 272, 1462.
[36] H. Klauk, U. Zschieschang, J. Pflaum, M. Halik, "Ultralow-power organic complementary circuits, " Nature 2007, 445, 745.
[37] A. Facchetti, M. H. Yoon, T. J. Marks, "Gate Dielectrics for Organic Field-Effect Transistors: New Opportunities for Organic Electronics, " Adv. Mater. 2005, 17, 1705.
[38] J. Jang, Mater. Today 2006, 9, 46.
[39] K. Kim, D. L. Carrolla, "Roles of Au and Ag nanoparticles in efficiency enhancement of poly(3-octylthiophene)/C60 bulk heterojunction photovoltaic devices, " Appl. Phys. Lett. 2005, 87, 203113.
[40] Z. R. Hong, Z.H. Huang, X. T. Zeng, " Investigation into effects of electron transporting materials on organic solar cells with copper phthalocyanine/C60 heterojunctions, " Chem. Phys. Lett. 2006, 425, 62.
[41] M. Kitamura, Y. Arakawa, " Roles of Au and Ag nanoparticles in efficiency enhancement of poly(3-octylthiophene)/C60 bulk heterojunction photovoltaic devices, " Appl. Phys. Lett. 2007, 91, 053505.
[42] X. H. Zhang, W. J. Potscavage, S. Choi, B. Kippelen, " Low-voltage flexible organic complementary inverters with high noise margin and high dc gain, " Appl. Phys. Lett. 2009, 94, 043312.
[43] M. H. Yoon, H. Yan, A. Facchetti, T. J. Marks," Low-Voltage Organic Field-Effect Transistors and Inverters Enabled by Ultrathin Cross-Linked Polymers as Gate Dielectrics, " J. Am. Chem. Soc. 2005, 127, 10388.
[44] C. D. Dimitrakopoulos and P. R. L. Malenfant, "Solution-processed ambipolar organic field -effect transistors and inverters," Adv. Mater. 2002, 14, 99.
[45] E. J. Meijer, S. Setayesh, E. van Veenendaal, B. H. Huisman, P. W. M. Blom, J. C. Hummelen, U. Scherf, T. M. Klapwijk, and D. M. de Leeuw, "The path to ubiquitous and low-cost organic electronic appliances on plastic," Nature Mater. 2003, 2, 678.
[46] S. R. Forrest, "Organic thin film transistors for large area electronics," Nature Mater. 2004, 428, 911.
[47] C. Rost, S. Karg, W. Riess, M. A. Loi, M. Murgia, and M. Muccini, "Light-emitting ambipolar organic heterostructure field-effect transistor," Syn. Metals. 2004, 146, 237.
[48] M. Bronner, A. Opitz, and W. Brütting, " Ambipolar charge carrier transport in organic semiconductor blends of phthalocyanine and fullerene," Phys. Stat. Sol. 2008, 205, 549.
[49] By S. I. Noro, T. Takenobu, Y. Iwasa, H. C. Chang, S. Kitagawa, T. Akutagawa, and T. Nakamura*, "Ambipolar, Single-Component, Metal–Organic Thin-Film Transistors with High and Balanced Hole and Electron Mobilities," Adv. Mater. 2008, 20, 3399.
[50] C.Y. Yang, Dhananjay, S. S. Cheng, C. W. Ou, Y. C. Chuang, M. C. Wu, C. W. Chu, "Realization of ambipolar pentacene thin film transistors through interfacial engineering," J. Appl. Phys. 2008, 103, 094519.
[51] M. Bronner, A. Opitz, and W. Brütting," Ambipolar charge carrier transport in organic semiconductor blends of phthalocyanine and fullerene," Phys. Stat. Sol. 2008, 205, 549.
[52] A. Opitz, M. Bronner, and W. Brütting, "Ambipolar charge carrier transport in mixed organic layers of phthalocyanine and fullerene," J. Appl. Phys. 2007, 101, 063709.
[53] V. Shrotriya, J. Ouyang, R. J. Tseng, G. Li, Y. Yang, "Absorption spectra modification in poly(3-hexylthiophene):methanofullerene blend thin films," J. Chemical Physics Letters, 2005, 411, 138.
[54] T. Stu¨binger, and W. Bru¨tting, "Exciton diffusion and optical interference in organic donor–acceptor photovoltaic cells," J. Appl. Phys. 2001, 90, 3632.
[55] D. K. Hwang, C. S. Kim, J. M. Choi, K. Lee, J. H. Park, E. Kim, H. K. Baik, J. H. Kim, and S. Im, "Polymer/YOx Hybrid-Sandwich Gate Dielectrics for Semitransparent Pentacene Thin-Film Transistors Operating Under 5 V, " Adv. Mater. 2006, 18, 2299.
[56] F. C. Chen, C. S. Chuang, Y. S. Lin, L. J. Kung, T. H. Chen, and H. P. D. Shieh, “Low-voltage organic thin-film transistors with polymeric nanocomposite dielectrics
, " Organic Electronics, 2006, 7, 43.
[57] C. Bartic, H. Jansen, A. Campitelli, S. Borghs, " Ta2O5 as gate dielectric material for low-voltage organic thin-film transistors, " Organic Electronics, 2002, 3, 65.
[58] D. M. Pai, J. F. Yanus, and M. Stolka, "Trap-Controlled Hopping Transport, " J. Phys. Chem. 1984, 88, 4714.
[59] G. Horowitz, "Organic Field-Effect Transistors, " Adv. Mater.1998, 10, 365.