簡易檢索 / 詳目顯示

研究生: 陳雨澤
Chen, Yu-Ze
論文名稱: FePdCu鐵磁性形狀記憶合金均質化之研究
指導教授: 胡塵滌
Hu, Chen-Ti
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 122
中文關鍵詞: FePdCu均質化相變化溫度磁伸縮值雙向形狀記憶回復率
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要

    本研究目的為探討冷滾壓以及1273K熱處理對於快速凝固旋淬法製備的Fe70Pd30-XCuX(X=0.3、0.5、0.7、1、3 at%)鐵磁性形狀記憶合金薄帶在相變化溫度、磁性質、磁伸縮值與形狀記憶效應的影響。
    剛製成的Fe70Pd30-XCuX(X=0.7、1、3 at%)記憶合金薄帶中均發現bct相的存在,經過均質化處理後,有效的消除bct相,並且均質化後的試片Fe70Pd29Cu1、Fe70Pd27Cu3在室溫發現fct相的存在。相變化溫度方面,Fe70Pd29Cu1均質化後,Ms 接近318K,Fe70Pd27Cu3均質化後,Ms 接近323K。
    Fe70Pd30-XCuX(X=0.7、1、3 at%)記憶合金薄帶,不論是剛快速旋淬製成或是均質化後的室溫飽和磁化量都是Fe70Pd29Cu1、Fe70Pd27Cu3較小而矯頑磁場則是Fe70Pd29Cu1、Fe70Pd27Cu3較大。不施加應力時磁伸縮值方面,剛製成的薄帶Fe70Pd29Cu1、Fe70Pd27Cu3因室溫存在著bct相,所以較低。而均質化後的薄帶Fe70Pd29Cu1、Fe70Pd27Cu3
    在室溫存在fct相,不施加應力時磁伸縮值大幅提升。均質化後的薄帶Fe70Pd29Cu1在施加應力與外加磁場9kOe下磁伸縮值表現出920ppm,均質化後的薄帶Fe70Pd29Cu3在施加應力與外加磁場9kOe下磁伸縮值表現出950ppm。
    由於剛製成的薄帶Fe70Pd29Cu1、Fe70Pd27Cu3在室溫均呈現bct相,因此不具有形狀記憶的效應。經過均質化後,Fe70Pd29Cu1、Fe70Pd27Cu3試片均表現出雙向記憶的效應。經過50次熱循環後,均質化後的Fe70Pd29Cu1試片保有15%的雙向記憶回復率,均質化後的Fe70Pd29C3試片保有35%的雙向記憶回復率。


    目 錄 論文摘要 Ⅰ 目錄 Ⅱ 表目錄 Ⅴ 圖目錄 Ⅵ 第一章 緒論 1 1-1 前言 1 1-2 鐵磁形狀記憶合金 1 1-2-1 形狀記憶效應 2 1-2-2 磁伸縮 3 1-2-3 鐵磁形狀記憶效應 4 1-2-4 鐵磁形狀記憶合金之應用 6 1-3 鐵鈀形狀記憶合金文獻回顧 6 1-3-1 鐵鈀製程文獻回顧 7 1-3-2 鐵鈀記憶合金相變化文獻回顧 7 1-3-3 形狀記憶效應 9 1-3-4 磁性質與磁伸縮(鐵磁性形狀記憶效應) 10 1-3-5 添加第三元素的影響 12 1-4 研究目的 13 第二章 實驗步驟及方法 26 2-1 試片成分及製備 26 2-2 快速凝固法(旋淬法,melt-spinning) 26 2-3 薄帶試片均質化熱處理 27 2-4 成分分析 27 2-5 結構分析及觀察 27 2-5-1 室溫X-ray 繞射分析 27 2-5-2 變溫X-ray 繞射分析 27 2-5-3 OM顯微結構觀察 28 2-6 磁性質量測 28 2-7 磁伸縮量測 28 2-8 形狀記憶效應測試 29 2-9 儀器與量測原理 30 2-9-1 XRD 30 2-9-2 振動樣品磁量儀(Vibrating-Sample Magnetometer) 30 2-9-3 超導量子干涉儀(Superconducting Quantum Interference Device,SQUID) 30 2-9-4 應變規(Strain Gauge) 31 第三章 結果與討論 39 3-1 試片代號介紹 39 3-2 試片基本性質研究 39 3-2-1 ICP-AES成分定量分析 39 3-2-2 室溫薄帶X-ray繞射分析 39 3-2-3 變溫薄帶X-ray繞射分析 42 3-2-4 OM顯微結構觀察 43 3-3 磁性質研究 44 3-3-1 磁通量研究(VSM Method) 44 3-3-1-1 CuX-AS(X=0.3、0.5、0.7、1、3 at%)磁通量比較……44 3-3-1-2 CuX-Hom 15min(X=0.3、0.5、0.7、1、3 at%)磁通量比較.45 3-3-1-3 CuX-AS與CuX-Hom 15min(X=0.3、0.5、0.7、1、3 at%) 磁通量比較……………………………………………………..45 3-3-2 相變化研究(SQUID Method)……………45 3-3-3 磁伸縮研究(Strain Gauge Method)……………….46 3-3-3-1 剛噴製成薄帶CuX-AS(X=0.3、0.5、0.7、1 at%)磁伸縮比較…..…………………………………………………………46 3-3-3-2 均質化薄帶CuX-Hom 15min(X=0.3、0.5、0.7、1、3 at%)磁伸縮比較……………………………………………………………..48 3-3-3-3 CuX-AS與Hom 15min(X=0.3、0.5、0.7、1 at%)磁伸縮比 較…….………………………………………………………48 3-4 形狀記憶效應研究 50 3-5 第三元素Cu抑制bct成長能力之研究……………….50 第四章 結論 115 第五章 參考文獻 117 附錄1…………………………………………………..121

    [1] V. Kokorin and M. Wuttig, “Magnetostriction in ferromagnetic shape memory alloys”, Journal of Magnetic and Magnetic Materials 234(2001), p.p.25-30.
    [2] Ullakko, J. k. Huang, C.Kantner, C. O’Handley and V. V. Kokorin, “Large magnetic-field-induced strains in Ni2MnGa single crystals “,Applied Physics Letter 69(1996), p.p.1966-1968.
    [3] Kakeshita, K.Shimizu, S.Funada and M.Date, Trans., ” Magnetic Field-induced Martensitic Transformations in Disordered and Ordered Fe-Pd Alloys”, Transactions of the JAPAN Institute of Metals 25(1984), p.p.837-844.
    [4] Chang and T.A. Read, Trans. AIME., 189(1951) ,p.47.
    [5] C.M. Wayman, “Some Applications of Shape-memory Alloys”,
    Journal of Metals, 32(1980) ,p.p.129-137.
    [6] K. Otsuka and K. Shimuzu, “Development of Shape Memory
    Alloys” , ISIJ International. Rev., 29(1989), p.p.353-377.
    [7] L. M Schetky, “Shape memory alloys”, Scientific American,
    241(1979), p.p.74-82.
    [8] Y. Furuya, N. W. Hagood, H. Kimura and T. Watanabe, “Shape memory effect and magnetostriction in rapidly solidified Fe-29.6 at %Pd alloy “, Materials Transactions JIM 39(1998), p.p.1248-1254.
    [9] S. J. Murray, M. Marioni, S. M. Allen, R.C. O’Handley and T. A. Lograsso, “6% magnetic-field-induced strain by twin-boundary motion in ferromagnetic Ni-Mn-Ga“, Applied Physics Letters 77(2000), p.p.886-888.
    [10] C. Y. Yu, 國立清華大學碩士論文“FePdPt, FePdAu 鐵磁性形狀記憶合金磁性質及形狀記憶效應研究”, 第3章2005, p.p.47-120.
    [11] L. Delaet, R. V. Krishnan, H. Tas and H. Warlimont, “Thermoelasticity, Pseudoelasticity and Memory Effects Associated with Martensitic Transformations. 1. Structural and Microstructural Changes Associated with Transformations“, Journal of Materials Science 9(1974), p.p.1521-1535.
    [12] R. V. Krishnan, L. Delaet, H. Tas and H. Warlimont, “Thermoelasticity, Pseudoelasticity and Memory Effects Associated with Martensitic Transformations. 2. Macroscopic Mechanical-Behavior”, Journal of Materials Science 9(1974), p.p.1536-1544.
    [13] H. Warlimont, L. Delaet, R. V. Krishnan and H. Tas, “Thermoelasticity, Pseudoelasticity and Memory Effects Associated with Martensitic Transformations. 3. Thermodynamics and Kinetics”, Journal of Materials Science 9(1974), p.p.1545-1555.
    [14] T. Tadaki, K. Otsuka and K. Shimizu, “Shape Memory Alloys”, Annual Review of Materials Science, 18(1988), p.p.25-45.
    [15] D. P. Dunne and C. M. Wayman, “Effect of Austenite Ordering on Martensite Transformation in Fe-Pd Alloys Near Composition Fe3. 2.Crystallography and General Features”, Metallurgical Transactions 4(1973), p.p.147-152.
    [16] T. A. Schroder and C. M. Wayman, “2-way Shape Memory Effect and Other Training Phenomena in Cu-Zn Single-Crystals “, Scripta Metallurgica 11(1977), p.p.225-230.
    [17] B. D. Cullity, “Introduction to Magnetic Materials”, Chap.8, 1972, p.p.248-285.
    [18] D. Gignoux and M. Schlenker , “MagnetismⅠ Fundamantals”, chapter 3 and 12,(2002), p.p. 79-103 and p.p 351-396.
    [19] D. Vokoun, Y. W. Wang, T. Goryczka, and C. T. Hu, “Magnetostriction and Shape Memory Properties of Fe-Pd Alloys with Co and Pt Additions”, Smart Materials(accepted), 2005.
    [20] J. Cui, T.W. Shield and R.D. James, “Phase Transformation and Magnetic Anisotropy of An Iron-Palladium Ferromagnetic Shape-Memory Alloy “, Acta Materialia 52(2004), p.p.35-47.
    [21] K. Ullakko, J.K. Huang, V.V. Kokorin and R.C. O’Handley, “Magnetically Controlled Shape Memory Effect in Ni2MnGa Intermetallics “Scripta Materialia 36(1997), p.p.1133-1138.
    [22] K. Ullakko, “Magnetically Controlled Shape Memory Alloys: A New Class of Actuator Materials“, Joural of Materials Engineering and Performance 5(1996), p.p.405-409.
    [23] 金重勳主編,“磁性技術手冊”,第31章 (2002), p.p. 409-419.
    [24] K. Tanaka, T. Ichitsubo and M. Koiwa, “Effect of External Fields on Ordering of FePd “Material Science and Engineering A 312 (2001), p.p.118-127.
    [25] P.R. Aitchison, J.N. Chapman, V. Gehanno, I.S. Weir, M.R. Scheinfein, S. McVitie and A. Marty, “High Resolution Measurement and Modelling of Magnetic Domain Structures in Epitaxial FePd (001) L1(0) Films With Perpendicular magnetisation”, Journal of Magnetism and Magnetic Materials 223(2001), p.p.138-146.
    [26] T. Mohri, T. Horiuchi, H. Uzawa, M. Ibaragi, M. Igarashi and F. Abe, “Theoretical Investigation of L1(0)-Disorder Phase Equilibria in Fe-Pd Alloy System “, Journal of Alloys and Compounds 317-318(2001), p.p.13-18.
    [27] L.S. Wang, Z.H. Fan and D.E. Laughlin, “Trace Analysis For Magnetic Domain Images of L1(0) Polytwinned Structures “, Scripta Materialia 47(2002), p.p.781-785.
    [28] T. Kakeshita and K. Ullakko, “Giant Magnetostriction in Ferromagnetic Shape-Memory Alloys”, Mrs Bulletin 27 (2002), p.p.105-109.
    [29]I.Kock,T.Edler,S.G.Mayr,”Growth behavior and intrinsic properties of vapor-deposited iron palladium thin films”, JOURNAL OF APPLIED PHYSICS 103, 046108 (2008)
    [30] Y. Furuya, N. W. Hagood, P. Kimura and T. Watanabe, “Shape Memory Effect and Magnetostriction in Rapidly Solidified Fe-29.6 at %Pd Alloy “, Materials Transactions JIM 39(1998), p.p.1248-1254.
    [31] Y. W. Wang, 國立清華大學碩士論文“Fe-Pd鐵磁性形狀記憶合金添加第三元素之研究”,第3章2004, p.p.39-64.
    [32] Iris Kock, Sven Hamann , Hayo Brunken , Tobias Edler , S.G. Mayr , Alfred Ludwig,” Development and characterization of Fe70Pd30 ferromagnetic shape memory splats”, Intermetallics (2010) 1–6.
    [33] M. Sugiyama, R.Oshima and F.E. Fujita, “Martensitic- Transformation in the Fe-Pd Alloy System“, Transactions of the JAPAN Institute of Metals25(1984), p.p.585-592.
    [34] R. Hultgren and C.A. Zapffe, Nature 142(1938), p.395
    [35] T. Sohmura, R. Oshima and F.E. Fujita, “Thermoelastic FCC-FCT Martensitic-Transformation in Fe-Pd Alloy“, Scripta Metallurgica. 14(1980), p.p.855-856.
    [36] R. Oshima, “Successive Martensitic Transformations in Fe-Pd Alloys“, Scripta Metallurgica 15(1981), p.p.829-833.
    [37]Kenta Seki,Hiroaki Kura,Tetsuya Sato,” Size dependence of martensite transformation temperature in ferromagnetic shape memory alloy FePd”, JOURNAL OF APPLIED PHYSICS 103,
    063910 (2008)
    [38] M. Sugiyama, R.Oshima and F.E. Fujita, “Mechanism of FCC-FCT Thermoelastic Martensite-Transformation in Fe-Pd Alloys“, Transactions of the JAPAN Institute of Metals 27(1986), p.p.719-730.
    [39] H. Kato, Y. Liang and M. Taya, “Stress-induced FCC/FCT Phase Transformation in Fe-Pd Alloy “, Scripta Materialia 46(2002), p.p471-475.
    [40] J.J. Felten, T.J. Kinkus, A.C.E. Reid, J.B. Cohen, and G.B. Olson, “Solid-Solution Structure and the Weakly First-Order Displacive Transformation in Fe-Pd Alloys “, Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science 28(1997), p.p. 527-536.
    [41] J. Cui and R.D. James, “Study of Fe3Pd and Related Alloys for Ferromagnetic Shape Memory “, IEEE Transactions on Magnetics 37(2001), p.p.2675-2677.
    [42] H. Kato, T. Wada, Y. Liang, T. Tagawa, M. Taya and T. Mori, “Martensite Structure in Polycrystalline Fe-Pd “, Materials Science and Engineering A 332(2002), p.p134-139.
    [43] Y. Liang, T. Wada, H. Kato, T. Tagawa, M. Taya and T. Mori, “Straining of a polycrystal of Fe-Pd with martensite structure by uniaxial loading “, Materials Science and Engineering A 338(2002), P.P. 89-96.
    [44] M. Matsui, T. Shimizu, H. Yamada snd K.Adachi, “Magnetic-Properties and Thermal-Expansion of Fe-Pd Invar- Alloys“, Journal of Magnetism and Magnetic Materials 15-18(1980), p.p. 1201-1202.
    [45] T. Kubota, T. Okazaki, H. Kimura, T. Watanbe, M. Wutting and Y. Furuya, “Effect of Rapid Solidification on Giant Magnetostriction in Ferromagnetic Shape Memory Iron-based Alloys”, Science and Technology of Advanced Materials 2(2002), p.p.201-207.
    [46] S. Inoue, K. Inoue, K. Koterazawa and K. Mizuuchi, “Shape Memory Behavior of Fe-Pd Alloy Thin Films Prepared by DC Magnetron Sputtering “, Materials Science and Engineering A 339(2003), p.p.29-34.
    [47] S. Inoue, K. Inoue, S. Fujita and K. Koterazawa, “Fe-Pd Ferromagnetic Shape Memory Alloy Thin Films Made by Dual Source DC Magnetron Sputtering “, Materials Transactions 44(2003), p.p.298-304.
    [48] M. Senthil Kumar,” Temperature dependence of magnetization in Fe–Pd thin films”, Materials Science and Engineering B 162 (2009) 59–63.
    [49] D. Vokoun and C.T. Hu, “Two-Way Shape Memory Effect in Fe-28-8 at.% Pd Melt-Spun Ribbons “, Scripta. Materialia. 47(2002), p.p.453-457.
    [50] D. Vokoun and C.T. Hu, “Improvement of Shape Memory Characteristics in Fe-Pd Melt-Spun Shape Memory Ribbons “, Journal of Alloys and Compounds 346(2002), p.p.147-153.
    [51] R.D. James and M. Wuttig, “Magnetostriction of Martensite” Philosophical Magazine A 77(1998), p.p.1273-1299.
    [52] J. Koeda, Y. Nakamura, T. Gukuda, T. Kakeshita, T. Takeuchi and K. Kishio, Trans. Mat. Res. Soc. Jap. 26(2001), p.215
    [53] J. Cui and R.D. James, “Study of Fe3Pd and Related Alloys for Ferromagnetic Shape Memory “, IEEE Transactions on Magnetics. 37(2001), p.p.2675-2677.
    [54] T. Kakeshita and K. Ullakko, “Giant Magnetostriction in Ferromagnetic Shape-Memory Alloys “MRS Bulletin 27(2002), p.p.105-109.
    [55] T. Kubota, T. Okazaki, Y. Furuya and T. Watanabe, “Large Magnetostriction in Rapid-Solidified Ferromagnetic Shape Memory Fe-Pd Alloy “, Journal of Magnetism and Magnetic Materials 239(2002), p.p.551-553.
    [56] H.Y. Yasuda, N. Komoto, M. Ueda and Y. Umakoshi, “Microstructure Control for Developing Fe-Pd Ferromagnetic Shape Memory Alloys”, Science and Technology of Advanced Materials 3(2002), p.p.165-169.
    [57] T. Okazaki, H. Nakajima and Y. Furuya, “Large Magnetostriction of Fe-29.6 at% Pd Alloy Ribbon Under Tensile Stress”, Materials Transactions 44(2003), p.p.665-668.
    [58] Y. Liang, Y. Sutou, T. Wada, C. C. Lee, M. Taya, T. Mori., “Magnetic Field-Induced Reversible Actuation Using Ferromagnetic Shape Memory Alloys”, Scripta Materialia 48 (2003), p.p.1415-1419.
    [59] R.A. Stern, S.D. Willoughby, A. Ramirez J.M. MacLaren, J. Cui, Q. Pan and R.D. James, “Electronic and Structural Properties of Fe3Pd-Pt Ferromagnetic Shape Memory Alloys”, Journal of Applied Physics 91(2002), p.p.7818-7820.
    [60] T. Wada, T. Tagawa and M. Taya, “Martensitic Transformation in Pd-rich Fe-Pd-Pt Alloy”, Scripta Materialia 48(2003), p.p.207-211.
    [61] K. Tsuchiya, T. Nojiri, H. Ohtsuka and M. Umemoto, “Effect of Co and Ni on Martensitic Transformation and Magnetic Properties in Fe-Pd Ferromagnetic Shape Memory Alloys”, Materials. Transactions 44(2003), p.p.2499-2502.
    [62]V.S’anchez-Alarcos,V.Recarte,J.I.P’erez-Landaza’bal,M.A.Gonza’lez,J.A.Rodri’guez-Velama’zan,”Effect of Mn Addition on the structural and magnetic properties of Fe-Pd ferromagnetic shape memory alloys”,Acta Materialia 57 (2009) 4224-4232.
    [63] S. U. Jen,Yuan-Tsung Chen,T.L. Tsai,”Magnetostrictive strains in polycrystalline FePdRh alloy”,Journal of Applied Physics 103,07B902 2008
    [64] Yin-Chih Lin , H. T. Lee, S. U. Jen,Y. T. Chen,” Magnetic structure of an Fe–Pd–Rh alloy”, JOURNAL OF APPLIED PHYSICS 101, 09N514 2007
    [65] Yin-Chih Lin,Hwa-Teng Lee,” Magnetostriction and magnetic structure in annealed recrystallization of strain-forged ferromagnetic shape memory Fe–Pd–Rh alloys”, Journal of Applied Physics 107, 09D312(2010)
    [66] http://www.mse.nthu.edu.tw/about/property_om.php?Sn=7
    [67] http://www.mse.nthu.edu.tw/~chlai/Facility/VSM.html
    [68] http://rdweb.adm.nctu.edu.tw/page.php?serial=430
    [69] 施志超,國立清華大學博士論文, “RT2材料的磁伸縮與磁性研究” 第2章,2002, p.p.7-29.
    [70] T. Wada, Y. Liang, H. Kato, T. Tagawa, M. Taya and T. Mori, “Structural Change and Straining in Fe-Pd Polycrystals by Magnetic Field”, Materials Science and
    Engineering A 361(2003), p.p.75

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE