研究生: |
翁翊軒 Weng, Yi Hsuan |
---|---|
論文名稱: |
細胞自組裝陣列晶片自動影像檢測及捕捉系統應用於循環腫瘤細胞檢測 Rapid Circulating Tumor Cells Diagnosis on Self-Assembled Cell Array (SACA) Chip by In-Parallel Image Analysis and In-Situ Cell Capture |
指導教授: |
曾繁根
Tseng, Fan Gang |
口試委員: |
呂隆昇
Lu, Long Sheng 蘇育全 Su, Yu Chuan |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 74 |
中文關鍵詞: | 細胞自組裝陣列晶片 、循環腫流細胞 、微流道 |
外文關鍵詞: | SACA Chip, Circulating Tumor Cell, Microfluidic |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
惡性腫瘤為台灣十大死因之首,惡性腫瘤治療的困難之處並不僅限於腫瘤本身的消滅,更難以預防的是癌細胞轉移,常常使治療的時間拉長、難度提升。在腫瘤轉移時會產生「循環腫瘤細胞」(Circulating Tumor Cell, CTC),近年的研究表示循環腫瘤細胞的多寡與病情的嚴重性及預測方向有相當的關係,因此偵測與分析循環腫瘤細胞是近年來重要的研究方向之一,特別是對於早期癌症轉移以及接受藥物長期治療的病人而言。
本論文利用流體的特性,在玻璃基材上以SU-8做出結構。細胞在螢光抗體標定之後藉由重力和液體流動產生的側向拉力影響下產生單層緊密排列的自組裝陣列,在晶片中的觀測區域形成二維陣列,最後以螢光顯微鏡觀測循環腫瘤癌細胞並計算數量,並與醫院進行IRB計劃合作取得大腸癌及乳癌病患的血液檢體,並且與流式細胞儀及Isoflux系統的結果作比較。相較於實驗室細胞株的結果,檢體具有臨床意義且在大量的實驗後可以建立有效的臨床數據。
此研究方法製作成本較低,且結構相當簡易,檢體在晶片上十分鐘內即可完成沉降排列。本論文更建立自動化的檢測系統與細胞捉取系統統,除了縮短檢測的時間及減輕實驗人員負擔之外,更可以再檢測後取出循環腫瘤細胞做後續的細胞實驗。本研究的主要成果為:1.可運用於臨床上的檢測裝置。2.更快速的自動化檢測設備。此檢測方法未來更計畫與醫院合作進行癌症相關的檢測。3.細胞捉取設備。捕捉循環腫瘤細胞以利於後續培養或生化分析等實驗。
Malignant tumor is the first of top ten death causes in Taiwan. The difficulty is not only the treatment of malignant tumor eradication, and it is more difficult to prevent cancer metastasis. It makes treatment time stretched and hard. Circulating tumor cells (CTCs) are generated when tumor metastasis occurs. Recent research represents the severity of disease is related to the amounts of circulating tumor cells. So it is an important research direction which finds out and analysis circulating tumor cells for the clinical study.
This report uses a fluid feature for detecting CTCs. Self –Assembled Cell Array Chip makes up with SU-8 photoresist on a glass substrate. Cells produced by flow of liquid and gravity to form a high density monolayer array after fluorescent calibration. In the end CTCs can be count by the fluorescence microscope. It has IRB cooperated plan with hospital and allowed to get colorectal cancer and breast cancer patient blood sample to do the clinical research. The result of SACA Chip will be compared with flow cytometry and IsoFlux.
This report provides an inexpensive and simple way to make chip and the process costs less than ten minutes. It also builds up the automatic imaging and in-situ cell capturing process to shorten the process time and isolate CTCs after process.
[1] V. Plaks, C. D. Koopman, and Z. Werb, “Circulating Tumor Cells,” Science (80-. )., vol. 341, no. 6151, pp. 1186–1188, 2013.
[2] B. Faltas, “Cornering metastases: therapeutic targeting of circulating tumor cells and stem cells,” Front. Oncol., vol. 2, no. July, pp. 1–7, 2012.
[3] S. Koscielny and M. Tubiana, “Parallel progression of tumour and metastases.,” Nat. Rev. Cancer, vol. 10, no. 2, p. 156, 2010.
[4] N. Aceto, A. Bardia, D. T. Miyamoto, M. C. Donaldson, B. S. Wittner, J. a. Spencer, M. Yu, A. Pely, A. Engstrom, H. Zhu, B. W. Brannigan, R. Kapur, S. L. Stott, T. Shioda, S. Ramaswamy, D. T. Ting, C. P. Lin, M. Toner, D. a. Haber, and S. Maheswaran, “Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis,” Cell, vol. 158, no. 5, pp. 1110–1122, 2014.
[5] C. Alix-Panabières, K. Pantel, and I. Lokody, “Challenges in circulating tumour cell research,” Nat. Rev. Cancer, vol. 14, no. 3, p. 152, 2014.
[6] S. Nagrath, L. V Sequist, S. Maheswaran, D. W. Bell, P. Ryan, U. J. Balis, R. G. Tompkins, and D. a Haber, “NIH Public Access,” vol. 450, no. 7173, pp. 1235–1239, 2011.
[7] S. L. Stott, C.-H. C.-H. Hsu, D. I. Tsukrov, M. Yu, D. T. Miyamoto, B. a. Waltman, S. M. Rothenberg, A. M. Shah, M. E. Smas, G. K. Korir, F. P. Floyd, A. J. Gilman, J. B. Lord, D. Winokur, S. Springer, D. Irimia, S. Nagrath, L. V. Sequist, R. J. Lee, K. J. Isselbacher, S. Maheswaran, D. a. Haber, and M. Toner, “Isolation of circulating tumor cells using a,” October, vol. 107, no. 35, pp. 18392–7, 2010.
[8] U. A. Gurkan, T. Anand, H. Tas, D. Elkan, A. Akay, H. O. Keles, and U. Demirci, “Controlled viable release of selectively captured label-free cells in microchannels,” Lab Chip, vol. 11, no. 23, p. 3979, 2011.
[9] K. Hoshino, Y.-Y. Huang, N. Lane, M. Huebschman, J. W. Uhr, E. P. Frenkel, and X. Zhang, “Microchip-based immunomagnetic detection of circulating tumor cells,” Lab Chip, vol. 11, no. 20, p. 3449, 2011.
[10] R. a Hoffman and W. B. Britt, “of Cell,” J. Histochem. Cytochem., vol. 27, no. 1, pp. 234–240, 1979.
[11] S. Bevilacqua, M. Gallo, R. Franco, A. Rossi, A. De Luca, G. Rocco, G. Botti, C. Gridelli, and N. Normanno, “A ‘live’ biopsy in a small-cell lung cancer patient by detection of circulating tumor cells,” Lung Cancer, vol. 65, no. 1, pp. 123–125, 2009.
[12] M. G. Krebs, R. Sloane, L. Priest, L. Lancashire, J. M. Hou, A. Greystoke, T. H. Ward, R. Ferraldeschi, A. Hughes, G. Clack, M. Ranson, C. Dive, and F. H. Blackhall, “Evaluation and prognostic significance of circulating tumor cells in patients with non-small-cell lung cancer,” J. Clin. Oncol., vol. 29, no. 12, pp. 1556–1563, 2011.
[13] M. C. Miller, G. V Doyle, and L. W. M. M. Terstappen, “Significance of Circulating Tumor Cells Detected by the CellSearch System in Patients with Metastatic Breast Colorectal and Prostate Cancer.,” J. Oncol., vol. 2010, p. 617421, 2010.
[14] D. R. Gossett, W. M. Weaver, A. J. MacH, S. C. Hur, H. T. K. Tse, W. Lee, H. Amini, and D. Di Carlo, “Label-free cell separation and sorting in microfluidic systems,” Anal. Bioanal. Chem., vol. 397, no. 8, pp. 3249–3267, 2010.
[15] H. Wei, B. Chueh, H. Wu, E. W. Hall, C. Li, R. Schirhagl, J.-M. Lin, and R. N. Zare, “Particle sorting using a porous membrane in a microfluidic device.,” Lab Chip, vol. 11, no. 2, pp. 238–245, 2011.
[16] D. Di Carlo, N. Aghdam, and L. P. Lee, “Single-Cell Enzyme Concentrations , Kinetics , and Inhibition Analysis Using High-Density Hydrodynamic Cell Isolation Arrays Single-Cell Enzyme Concentrations , Kinetics , and Inhibition Analysis Using High-Density Hydrodynamic Cell Isolation Arrays,” Anal. Chem., vol. 78, no. 14, pp. 4925–4930, 2006.
[17] S. M. McFaul, B. K. Lin, and H. Ma, “Cell separation based on size and deformability using microfluidic funnel ratchets,” Lab Chip, vol. 12, no. 13, p. 2369, 2012.
[18] D. Issadore, H. Shao, J. Chung, A. Newton, M. Pittet, R. Weissleder, and H. Lee, “Self-assembled magnetic filter for highly efficient immunomagnetic separation.,” Lab Chip, vol. 11, no. 1, pp. 147–151, 2011.
[19] J. S. Kuo, Y. Zhao, P. G. Schiro, L. Ng, D. S. W. Lim, J. P. Shelby, and D. T. Chiu, “Deformability considerations in filtration of biological cells.,” Lab Chip, vol. 10, no. 7, pp. 837–842, 2010.
[20] M. E. Warkiani, B. L. Khoo, D. S.-W. Tan, A. A. S. Bhagat, W.-T. Lim, Y. S. Yap, S. C. Lee, R. a Soo, J. Han, and C. T. Lim, “An ultra-high-throughput spiral microfluidic biochip for the enrichment of circulating tumor cells.,” Analyst, vol. 139, no. 13, pp. 3245–55, 2014.
[21] M. Deutsch, A. Deutsch, O. Shirihai, I. Hurevich, E. Afrimzon, Y. Shafran, and N. Zurgil, “A novel miniature cell retainer for correlative high-content analysis of individual untethered non-adherent cells.,” Lab Chip, vol. 6, no. 8, pp. 995–1000, 2006.
[22] S. Yamamura, H. Kishi, Y. Tokimitsu, S. Kondo, R. Honda, S. Ramachandra Rao, M. Omori, E. Tamiya, and A. Muraguchi, “Single-cell microarray for analyzing cellular response,” Anal. Chem., vol. 77, no. 24, pp. 8050–8056, 2005.
[23] S. K. Arya, B. Lim, A. R. A. Rahman, S. Data, and S. Fig, “Enrichment, detection and clinical significance of circulating tumor cells.,” Lab Chip, vol. 13, no. 11, pp. 1995–2027, 2013.
[24] T.-J. Chen, J.-K. Wu, Y.-C. Chang, C.-Y. Fu, T.-P. Wang, C.-Y. Lin, H.-Y. Chang, C.-C. Chieng, C.-Y. Tzeng, and F.-G. Tseng, “High-efficiency rare cell identification on a high-density self-assembled cell arrangement chip,” Biomicrofluidics, vol. 8, no. 3, p. 036501, 2014.