簡易檢索 / 詳目顯示

研究生: 曾斌誠
Ping chen Tseng
論文名稱: 超快電子顯微鏡中射束動力學之探討
Bunched Beam Dynamics in Femtosecond Electron Microscope
指導教授: 施宙聰
Jow-Tsong Shy
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 56
中文關鍵詞: 超快電子顯微鏡飛秒電子束
外文關鍵詞: Ultrafast, TEM, Bunched Beam, coupled envelope equations
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 超快電子顯微術運用於觀察材料及生物試片之動態反應,其具有高度空間及時間解析能力。超快電子顯微鏡結合超快雷射及穿透式電子顯微鏡,產生飛秒電子束團來觀察樣品。但是空間電荷效應會劇烈影響飛秒電子束團在行進過程時的行為,像是電子束團變形及能量分散效應。為了暸解空間電荷對電子束團的影響,在本論文中,我們推導coupled envelope equations 來計算空間電荷效應對電子束團橫向及縱向長度變化的影響,並利用模擬軟體 PARMELA 來與其結果比較。我們藉由PARMELA模擬軟體來分析具高斯分佈電子束團在電子顯微鏡內各個元件內的行為且使用POISSON 模擬軟體來計算從穿透式電子顯微鏡拆除下的馬靴極磁透鏡的磁場分布。同時也設計磁透鏡參數來補償空間電荷造成的橫向長度變化。最後我們想出利用RF來補償因空間電荷效應所造成的縱向長度變化,於是使用PARMELA設計RF buncher 參數來分析電子束團在縱向長度上的補償效應。


    Ultrafast electron microscopy harbors femtosecond time resolution and atomic level spatial resolution. In NTHU/NSRRC time-resolved electron microscopy proposal, a transmission electron microscope (TEM) integrated with a femtosecond laser system was used to generate ultrafast electron probe for the study of transient state of various materials and bio samples. Space charge effect influenced such a short bunch seriously and consequently caused bunch broadening and energy spread. In the thesis, we derived coupled envelope equations incorporated with space charge effect as well as external fields and compared with PARMELA simulation code. PARMELA is also used to analyze space charge effect in Gaussian distributed bunch due to laser intensity distribution. The simulation results indicated the tendency of broadening caused by space charge effect is linear in drift space. And halo effect was found in the polepiece lens. In addition, we discussed energy spread of the bunch which related to matter wave dispersion in TEM components. At the end, we designed a RF buncher attached with a solenoid lens to compensate longitudinal and transverse broadening.

    1 Introduction 1.1 Motivations 1.2 Ultrafast Electron Diffraction and Microscope 1.3 NTHU/NSRRC Femtosecond TEM 1.4 Overview of Thesis 2 Theory of Bunched Beam Dynamics in TEM Components 2.1 The Kapchinsky-Vladimirsky Distribution 2.2 RMS Transverse Envelope Equation 2.3 RMS Longitudinal Envelope Equation 2.4 Coupled Envelope Equations for a Bunched Beam 2.4.1 Coupled Envelope Equations for a Bunched Beam in Drift Space 2.4.2 Charge Density Variation 2.4.3 Coupled Envelope Equations for a Bunched Beam in Solenoid Lens 2.4.4 Coupled Envelope Equations for a Bunched Beam in Polepiece Lens 3 Simulation Study 3.1 Simulation Programs 3.1.1 POISSON 3.1.2 PARMELA 3.2 Convergence Test 3.2.1 Convergence Test of Polepiece Lens 3.2.2 Reliability Test of PARMELA 4 Simulation Results 4.1 Gaussian Distributed Bunch in Drift Space 4.2 Gaussian Distributed Bunch in a Solenoid Lens 4.3 Gaussian Distributed Bunch in a Polepiece Lens 5 Longitudinal Bunch Compensation - RF Buncher 5.1 Concept of RF Buncher 5.2 RF Buncher Design 5.3 Transverse Emittance Compensation 6 Discussion:Conclusion And Future Work Appendix A Appendix B Appendix C

    [1] O. Bostanjoglo, M. Weingartner. Pulsed photoelectron microscope for imaging laser- induced nanosecond processes. Rev. Sci. Instrum. 68 (6); 1997.
    [2] O.Bostanjoglo, R. Elschner, Z. Mao, T. Nink, M. Weingartner. Nanosecond electron microscopes. Ultramicroscopy 81, 141-147; 2000.
    [3] H. Domer, O. Bostanjoglo. High-speed transmission electron microscope. Rev. Sci. Instrum. Vol 74 , 10; 2003.
    [4] A.G. Zewail. Femtochemistry, Atomic-scale dynamics of the chemical bond using ultrafast lasers. Nobel Lecture; 1999.
    [5] M. Eigen. Techniques of organic chemistry. Discuss. Faraday Soc. 17, 194; 1954.
    [6] Vladimir A. Lobastov et al. Four-dimensional ultrafast electron microscope. PNAS Vol. 102 No. 20; 2005.
    [7] L. Reimer. Transmission electron microscopy: physics of image formation and microanalysis. Springer; 1997.
    [8] B.D. Cullity, S.R. Stock. Elements of x-ray diffraction. Prentice Hall; 2001.
    [9] R. Henderson, Q. Rev. Biophys. 28, 171 (1995).
    [10] H. Ihee et al. Direct imaging of transient molecular structures with ultrafast diffraction. Science Vol. 291; 2001.
    [11] I. M. Kapchinsky, V. V. Vladimirsky. International conference on high energy accelerators, p. 274 ; 1959.
    [12] R. L. Gluckstern. Linear accelerators (ed. P. Lapostolle and A. Septier), p. 827; 1967.
    [13] Martin Reiser. “Theory and design of charged particle beams, p.449; 1994.
    [14] David B. Williams, C. Barry Carter. Transmission electron microscopy, p.94; 1996.
    [15] S. M. Juma and A. D. Faisal. Properties of the axial flux density distribution of magnetic electron lenses with a single cylindrical pole-piece. J. Phys. E: Sci. Instrum., 14; 1981.
    [16] S. M. Juma, M. A. Khaliq and F. H. Antar. Some properties of single pole piece objective electron lenses. J. Phys. E: Sci. Instrum., Vol. 16; 1983.
    [17] Glaser W 1941 Z. Phys. 117 285.
    [18] P. R. Sarma, R. K. Bhandari. A variational calculus approach for improving the field quality in Glaser magnets, J. Phys. D: Appl. Phys. 33; 2000.
    [19] Jack Tanabe. Iron dominated electromagnets design, fabrication, assembly and measurements chapter 6. SLAC-R-754; 2005.
    [20] 應根裕. 電子光學, p.499; 1989.
    [21] Mitsuru Uesaka. Femtosecond beam science, p.40; 2005.
    [22] Pimporn Junphong. Bunch compression of a non-relativistic ion beam in linear approximation, suriya study & laboratory note; 2000.
    [23] Thomas P. Wangler, Pierre Lapostolle, Alessandra Lombardi. Space-charge- induced emittance growth in an elliptical charged particle beam with a parabolic density distribution, in Conference Record of the IEEE 1993 Particle Accelerator Conference, 93CH3279-7, Vol.5. NJ: Institute of Electrical and Electronics Engineers, Inc., IEEE Service Center, 1993, 3606—3608.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE