簡易檢索 / 詳目顯示

研究生: 趙俊彥
論文名稱: 以結晶態高介電常數材料結合稀土族氧化物介面層作為鍺電容元件閘極介電層之研究
Study of Crystalline High- k Materials Combined With Rare-Earth Oxide Interfacial Layer as the Gate Dielectric for Ge MOS Capacitors
指導教授: 巫勇賢
口試委員: 高瑄苓
吳永俊
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2012
畢業學年度: 101
語文別: 中文
論文頁數: 57
中文關鍵詞: 高介電常數材料鍺電容元件
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要

    為了迎合當前CMOS元件的發展方向,在本次的實驗中,我們使用鍺作為通道材料,並結合結晶態高介電常數材料ZrTiO4與介面層材料Yb2O3作為閘極介電層,製成鍺電容元件。
    在第一個主題中,我們研究Yb2O3作為鍺電容元件之閘極介電層的特性。由XPS化學成分分析的結果可以得知在Yb2O3與鍺基板之介面形成了鍺金屬氧化物YbGeOx,穩定的鍺金屬氧化物YbGeOx對於鍺基板表面有良好的保護,所以之後的電性量測分析可以發現,無論是漏電流、頻散現象以及介面缺陷密度均有不錯的表現。
    在主題一中證明了Yb2O3確實可以有效保護鍺基板表面,於是我們在主題一的基礎之上,使用ZrTiO4/Yb2O3堆疊結構作為鍺電容元件之閘極介電層,希望能更進一步提升元件特性。在XRD結晶繞射分析中,可以得知經過600 oC RTA之後元件確實形成了結晶態Orthorhombic ZrTiO4。電性方面,由於結合了Orthorhombic ZrTiO4使得元件之等效氧化層厚度相較於主題一的實驗可以更進一步降低。另外因為Yb2O3介面層可以有效改善鍺基板的介面品質,且ZrTiO4/Yb2O3堆疊結構可以與主題一在相同等效氧化層厚度之情況下有較厚的物理厚度,所以在漏電流方面也有更好的表現。最後,可靠度量測中顯示,ZrTiO4/Yb2O3堆疊結構的鍺電容元件的PBTI表現雖然比單層Yb2O3的鍺電容元件表現差,這是由於ZrTiO4結晶化後在晶界的部分會有缺陷產生,使得電子注入後易被捕捉。不過整體來說,由於ZrTiO4/Yb2O3堆疊結構的元件有Yb2O3介面層的保護,所以仍使元件呈現出良好之PBTI表現。綜合以上結果,我們認為結晶態高介電常數材料ZrTiO4結合稀土族氧化物介面層Yb2O3之堆疊結構作為鍺電容元件之閘極介電層材料具有相當大的潛力。


    總目錄 摘要.......................................................i Abstract..................................................ii 致謝.....................................................iii 總目錄....................................................iv 表目錄.....................................................v 圖目錄....................................................vi 第一章 序論 1-1 研究背景.............................................1 1-2 介面層..............................................3 1-3 高介電常數材料的選擇..................................4 1-4 結晶態高介電常數材料..................................5 1-5 研究動機............................................6 1-6 論文結構............................................7 第二章 文獻回顧 第一部份:鍺介面鈍化之方法 2-1 以氧化鍺為基礎的介面層-GeO2..........................12 2-2 以氧化鍺為基礎的介面層-GeOxNy......................13 2-3 其他非氧化鍺的介面層-Y2O3............................14 第二部份:鈍化層Yb2O3 與高介電常數材料ZrTiO4 的選擇 2-4 鈍化層Yb2O3........................................21 2-5 高介電常數材料ZrTiO4................................22 第三章 結果與討論 [主題一] 以Yb2O3作為鍺電容元件之鈍化層之研究 3-1 TaN/Yb2O3/Ge MOS元件之製作............................27 3-2 TaN/Yb2O3/Ge MOS元件之特性討論........................27 3-2-1 XPS 化學成分分析....................................27 3-2-2 電容特性分析........................................28 3-2-3 磁滯現象分析........................................29 3-2-4 頻散現象分析........................................30 3-2-5 電流特性分析........................................30 3-2-6 介面缺陷密度分析....................................31 3-2-7 可靠度度分析-PBTI...................................32 [主題二] 以結晶態Orthorhombic ZrTiO4結合Yb2O3介面層之堆疊結構 3-3 TaN/ZrTiO4/Yb2O3/Ge MOS元件之製作....................39 3-4 TaN/ZrTiO4/Yb2O3/Ge MOS元件之特性討論................40 3-4-1 XRD 結晶繞射分析....................................40 3-4-2 電容特性與磁滯現象之分析.............................40 3-4-3 電流特性分析........................................41 3-4-4 介面缺陷密度分析....................................42 3-4-5 可靠度分析-PBTI.....................................42 第四章 結論與未來展望.......................................50 參考文獻..................................................52 表目錄 表1.1 各種高介電常數材料的基本電性..........................11 表3.1 各種介電層的電性比較.................................49 圖目錄 圖1.1 CMOS元件發展藍圖.....................................8 圖1.2 ZrO2與HfO2沉積於鍺基板上之電子顯微影像.................8 圖1.3 不同厚度SiO2下,閘極電壓對漏電流之曲線圖...............9 圖1.4 使用高介電常數材料降低漏電流之示意圖...................9 圖1.5 能帶偏移量示意圖....................................10 圖1.6 ZrO2三種結晶結構....................................10 圖2.1.1 N型鍺電晶體的製作流程圖.............................15 圖2.1.2 GeO氣體壓力對溫度圖................................16 圖2.1.3 介面缺陷密度對能量分布圖............................16 圖2.1.4 電子遷移率對參雜濃度分布圖..........................17 圖2.2.1 漏電流密度對閘極電壓圖..............................17 圖2.2.2 P型與N型鍺電容元件之頻散現象........................18 圖2.3.1 Y2O3與Ge介面之TEM圖................................19 圖2.3.2 三價稀土族元素鈍化Ge表面示意圖.......................19 圖2.3.3 介面缺陷密度對能量分布圖............................20 圖2.3.4 電子遷移率對參雜濃度分布圖..........................20 圖2.4.1 電容元件之頻散現象圖................................23 圖2.4.2 介面缺陷密度對閘極電壓圖............................23 圖2.5.1 ZrTiO4晶體結構.....................................24 圖2.5.2 ZrTiO4結晶繞射圖...................................24 圖2.5.3 電容密度對閘極電壓圖................................25 圖2.5.4 漏電流密度對閘極電壓圖..............................26 圖3.1 TaN/Y2O3/Ge元件製程..................................33 圖3.2 Yb2O3介電層之Yb 4d鍵結能譜圖..........................34 圖3.3 Yb2O3介電層之O 1s鍵結能譜圖...........................34 圖3.4 電容-電壓曲線圖......................................35 圖3.5 等效氧化層厚度對Yb2O3物理厚度作圖......................35 圖3.6 TaN/Yb2O3/Ge元件磁滯特性圖...........................36 圖3.7 TaN/Yb2O3/Ge元件頻散現象圖圖.........................36 圖3.8 TaN/Yb2O3/Ge元件漏電流比較圖.........................37 圖3.9 TaN/Yb2O3/Ge元件漏電流比較圖.........................37 圖3.10 TaN/Yb2O3/Ge元件電導-電壓曲線圖......................38 圖3.11 TaN/Yb2O3/Ge元件PBTI特性圖..........................38 圖3.12 TaN/ZrTiO4/Y2O3/Ge元件製程..........................43 圖3.13 ZrTiO4薄膜結晶繞射圖................................45 圖3.14 電容-電壓曲線圖.....................................45 圖3.15 TaN/ZrTiO4/Yb2O3/Ge元件磁滯特性圖...................46 圖3.16 TaN/ZrTiO4/Yb2O3/Ge元件漏電流比較圖.................46 圖3.17 TaN/ZrTiO4/Yb2O3/Ge元件漏電流比較圖.................47 圖3.18 TaN/ZrTiO4/Yb2O3/Ge元件漏電流統計圖.................47 圖3.19 TaN/ZrTiO4/Yb2O3/Ge元件電導-電壓曲線圖...............48 圖3.20 TaN/ZrTiO4/Yb2O3/Ge元件PBTI特性圖...................48

    參考文獻
    第一章
    [1.1] K. Mistry, M. Armstrong, C. Auth, S. Cea, T. Coan, T. Ghani, T. Hoffman, A. Murthy, J. Sandford, R. Shaheed, K. Zawadzki, K. Zhang, S. Thompson, and M. Bohr, “Delaying forever:uniaxial strained silicon transistors in a 90 nm CMOS technology,” in VLSI Symp. Tech. Dig., 2004, p. 50
    [1.2] K. C. Saraswat, C. O. Chui, T. Krishnamohan, A. Nayfeh, and P. McIntyre, “Ge based high performance enhancement in strained-Si n-MOSFET,” in IEDM Tech. Dig., 1994, p. 373
    [1.3] G. G. Fountain, R. A. Rudder, S. V. Hattangady, D. J. Vitkavage, R. J.Markunas, and J. B. Posthill, “Electrical and microstructural characterization of an ultrathin silicon interlayer used in a silicon dioxide/germanium-based MIS structure,” IEEE Electron Device Lett., vol. 24, p. 1010, 1988
    [1.4] Y. Wang, Y. Z. Hu, and E. A. Irene, “Electron cyclotron resonance plasma and thermal oxidation mechanisms of germanium,” J. Vac. Sci. Technol. A, vol. 12, p. 1309, 1994
    [1.5] J. Gregory, E. E. Crisman, L. Pruitt, D. J. Hymes, and J. J. Rosenberg, “Electrical characterization of some native insulators on germanium,” Mat. Res. Soc. Symp. Proc., vol. 76, p. 307, 1987
    [1.6] D. J. Hymes and J. J. Rosenberg, “Growth and materials characterization of native germanium oxynitride thin films on germanium,” J. Electrochem. Soc., vol. 135, p. 961, 1988
    [1.7] Y. Kamata, Y. Kamimuta, T. Ino, and A. Nishiyama, “Direct comparison of ZrO2 and HfO2 on Ge substrate in terms of the realization of ultrathin high-k gate stacks,” Jpn. J. Appl. Phys., vol. 44, p. 2323, 2005
    [1.8] Y. H. Wu, L. L. Chen, W. C. Chen, C. C. Lin, M. L. Wu, and J. R. Wu, “MOS devices with tetragonal ZrO2 as gate dielectric formed by annealing ZrO2/Ge/ZrO2 laminate,” Microelectron. Eng., vol. 88, p. 1361, 2011
    [1.9] Y. Liu, S. Shen, L. J. Brillson, and R. G. Gordon, “Impact of ultrathin Al2O3 barrier layer on electrical properties of LaLuO3 metal-oxide-semiconductor devices,” Appl. Phys. Lett., vol. 98, p. 122907, 2011
    [1.10] Delabie, F. Bellenger, M. Houssa, T. Conard, and S. V. Elshocht, “Effective electrical passivation of Ge(100) for high-k gate dielectric,” Appl. Phys. Lett., vol. 91, p. 082904, 2007
    [1.11] X. F. Li, X. J. Liu, W. Q. Zhang, Y. Y. Fu, and A. D. Li, “Comparison of the interfacial and electrical properties of HfAlO films on Ge with S and GeO2 passivation,” Appl. Phys. Lett., vol. 98, p. 162903, 2011
    [1.12] D. Kuzum, A. J. Pethe, T. Krishnamohan, Y. Oshima, Y. Oshima, Y. Sun, J. P. McVittie, P. A. Pianetta, P. C. McIntyre, and K. C. Saraswat, “Interface-engineered Ge (100) and (111), N- and P-FETs with high mobility,” in IEDM Tech. Dig., 2007, p. 723
    [1.13] N. Taoka, W. Mizubayashi, Y. Morita, S. Migita, and H. Ota, “Physical origins of mobility enhancement of Ge p-channel metal-insulator-semiconductor field effect transistors with Si passivation layers,” J. Appl. Phys., vol. 108, p. 104511, 2010
    [1.14] J. Robertson, “High dielectric constant gate oxides for metal oxide Si transistors”, Rep. Prog. Phys., vol. 69, p. 327, 2006
    [1.15] H. Jiang, R. I. Gomez-Abal, P. Rinke, and M. Scheffler, “Electronic band structure of zirconia and hafnia polymorphs from the GW perspective”, Phys. Rev. B, vol. 81, p. 085119, 2010

    第二章
    [2.1] C. H. Lee, T. Nishimura, K. Nagashio, K. Kita, and Akira Toriumi “High-electron-mobility Ge/GeO2 n-MOSFETs with two-step oxidation,” IEEE Trans. Electron Devices, vol. 58, no. 5, p. 1295. 2011.
    [2.2] Q. Xie, J. Musschoot, M. Schaekers, M. Caymax, A. Delabie, X. P. Qu, Y. L. Jiang, Sven Van den Berghe, J. Liu, and C. Detavernier, “Ultrathin GeOxNy interlayer formed by in situ NH3 plasma pretreatment for passivation of germanium metal-oxide-semiconductor devices,” Appl. Phys. Lett., vol. 97, p. 222902, 2010
    [2.3] C. X. Li, and P. T. Lai, “Wide-bandgap high-k Y2O3 as passivating interlayer for enhancing the electrical properties and high-field reliability of n-Ge metal-oxide-semiconductor capacitors with high-k HfTiO gate dielectric,” Appl. Phys. Lett., vol. 95, p. 022910, 2009
    [2.4] T. Nishimura, C. H. Lee1, T. Tabata, S. K. Wang, K. Nagashio, K. Kital, and A. Toriumi, “High-electron-mobility Ge n-channel metal–oxide–semiconductor field-effect transistors with high-pressure oxidized Y2O3,” Appl. Phys. Express, 2, p. 071404, 2011
    [2.5] C. H. Lee, T. Nishimura, T. Tabata, S. K. Wang, K. Nagashio, K. Kita, and A. Toriumi, “Ge MOSFETs performance: impact of Ge interface passivation,” in IEDM Tech. Dig., 2010, p. 416
    [2.6] Y. H. Wu, R. J. Lyu, M. L Wu, L, L, Chen, and C. C. Lin, “Integration of amorphous Yb2O3 and crystalline ZrTiO4 as gate stack for aggressively scaled MOS devices,” IEEE Electron Device Lett., vol. 33, p. 426, 2012

    第三章
    [3.1] R. Xie, T. H. Phung, W. He, M. Yu, and C. Zhu, “Interface-engineered high-mobility high-k/Ge pMOSFETs with 1-nm equivalent oxide thickness,” IEEE Trans. Electron Devices, vol. 56, p. 1330, 2009
    [3.2] S. Abermann, O. Bethge, C. Henkel, and E. Bertagnolli, “ZrO2/La2O3 high-k dielectrics on germanium reaching 0.5 nm equivalent oxide thickness,” Appl. Phys. Lett., vol. 94, p. 262904, 2009
    [3.3] R. Zhang, P. C. Huang, N. Taoka, M. Takenaka, and S. Takagi School of Engineering, “High mobility Ge pMOSFETs with 0.7 nm ultrathin EOT using HfO2/Al2O3/GeOx/Ge gate stacks fabricated by plasma post oxidation,” in VLSI Symp. Tech. Dig., 2012, p. 161
    [3.4] J.P. Xu, X. Zou, P.T. Lai, C.X. Li, and C.L. Chan, “Use of water vapor for suppressing the growth of unstable low-k interlayer in HfTiO gate-dielectric Ge metal-oxide-semiconductor capacitors with sub-nanometer capacitance equivalent thickness,” Thin Solid Films, vol. 94, p. 2892, 2009
    [3.5] M. K. Bera, C. Mahata1, A. K. Chakraborty, S. K. Nandi, J. N. Tiwari, J. Y. Hung, and C. K. Maiti, “TiO2/GeOxNy stacked gate dielectrics for Ge-MOSFETs,” Semicond. Sci. Technol., p. 1352, 2007
    [3.6] C. X. Li, and P. T. Lai, “Wide-bandgap high-k Y2O3 as passivating interlayer for enhancing the electrical properties and high-field reliability of n-Ge metal-oxide-semiconductor capacitors with high-k HfTiO gate dielectric,” Appl. Phys. Lett., vol. 95, p. 022910, 2009
    [3.7] Q. Xie, S. Deng, M. Schaekers, D. Lin, M. Caymax, A. Delabie, Y. Jiang, X. Qu, D. Deduytsche, and C. Detavernier, “High-performance Ge MOS capacitors by O2 plasma passivation and O2 ambient annealing,” IEEE Electron Device Lett., vol. 32, p. 1656, 2011

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE