簡易檢索 / 詳目顯示

研究生: 蔡祐同
論文名稱: 硫化鈷對電極與離子液體電解液應用於染敏太陽能電池之研究
A Study of CoS Counter Electrode and Ionic Liquid Electrolyte for Dye-Sensitized Solar Cells
指導教授: 萬其超
口試委員: 林正裕
童永樑
吳曜杉
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 102
中文關鍵詞: 染料敏化太陽能電池硫化鈷離子液體
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,染料敏化太陽能電池(Dye-sensitized solar cells, DSSC)因其高效率、低成本和簡單的製程而引起廣泛的注意。其中,白金電極在DSSC的對應電極上扮演減少電位損失和加速I3-還原速率的角色。然而,白金非常昂貴且當製造方法為熱還原法時,白金電極需要在高溫環境下完成,非常耗能且無法應用於軟性基板,或是當製造方法為濺鍍法時白金電極需要在真空下完成,因此上述常用的白金電極製備方法不利於大量製造。為了要大量製備染敏太陽能電池,學者們嘗試尋找能夠取代貴重金屬白金的材料和採用能夠大量製備的方法。近年來,硫化鈷被應用於染料敏化太陽能電池中當作對電極,因為硫化鈷擁有較好的催化性、便宜的價格、及充足的原料。在本研究,我們提供一個電鍍方法(potential reversal method, PR method)去製備硫化鈷電極。此方法可以在常溫常壓下應用,有利於大量製造。藉由此方法,在製備硫化鈷電極時可以有效地移除不具催化性的鈷金屬,可以製備催化性更好的硫化鈷電極並與採用直接電鍍方法製備的硫化鈷電極比較,此後還會將硫化鈷電極跟白金電極組成電池量測效率來做比較。
    採用PR方法時,有許多因素會影響到硫化鈷電極的催化能力,例如:氧化電位和還原電位、電鍍液中的酸鹼度、還原時間佔總周期的比例(duty cycle)、頻率及鍍上導電玻璃基板的庫倫數。我們將探討這些因素對硫化鈷電極的催化性的影響,並藉由循環伏安法及交流阻抗分析量測來評估硫化鈷電極的催化性。另外,其它量測也會執行以鑑定硫化鈷電極,例如: 用EDX確認有硫跟鈷的元素及比例、用XRD來確認有硫化鈷、用FESEM來確認硫化鈷的表面形貌。根據表3-3,以硫化鈷電極(PR method)所組成的DSSC,其效率為5.39%,僅略低於以白金電極所組成的DSSC(5.42%),遠高於硫化鈷電極(PS method, 直接電鍍法)所組成的DSSC(2.13%),代表硫化鈷有取代白金的可行性且利用PR方法所得到的硫化鈷電極相較於用直接電鍍的方法效率來得更高。最後,我們使用離子液體電解液和robust電解液搭配硫化鈷對電極做DSSC的長效測試,以確認硫化鈷電極是否可以通過長效測試。我們發現在長效測試中,硫化鈷對電極有脫落的現象發生,推測原因可能是來自於空氣或水影響到硫化鈷膜的黏著能力,使得脫落的現象發生。


    ABSTRACT I 摘要 III 謝辭 V Table of Contents VI List of Figures VIII List of Tables XI Chapter 1: Introduction and Literature review 1 1-1 Overview of Dye-Sensitized Solar Cells (DSSCs) 1 1-1.1 Introduction of DSSCs 1 1-1.2 Structures and Operational Principle of DSSC 2 1-1.3 The Counter Electrode (CE)-Electrochemical Catalyst 5 1-1.4 Platinum-Based Counter Electrode 6 1-1.5 Carbon-Based Counter Electrode 12 1-1.6 Conducting Polymer-Based Counter Electrode 14 1-2 Introduction of Cobalt Sulfide Counter Electrodes 16 1-2.1 Literature Review of Cobalt Sulfide Counter Electrodes 16 1-2.2 Deposition Mechanism of CoS by potentiodynamic method 20 1-3 Introduction of Pulse Method 23 1-3.1 Basic concept of Pulse Method 23 1-3.2 Application of Potential Reversal Method 25 1-4 Overview of Ionic Liquids 27 1-4.1 Introduction of Ionic Liquids 27 1-4.2 Viscosity of Ionic Liquids 28 1-4.3 Electrochemical Window of Ionic Liquids 29 1-4.4 Ionic Conductivity of Ionic Liquids 31 1-4.5 The Role of Ionic Liquid in The Electrolyte of DSSC 32 1-4.6 Purely Electroactive Ionic Liquid Electroytes 33 1-4.7 Binary Ionic Liquid Electrolytes 35 1-5 Motivation of This Study 38 Chapter 2: Experimental Section 39 2-1 Materials 39 2-2 Experimental Instrument 40 2-3 Principle and Measurement of Experiment instrument 41 2-3.1 Scanning Electron Micorscope (SEM) 41 2-3.2 Cell Efficiency Instrument 41 2-3.3 Cyclic Voltammetry (CV) Measurement 43 2-3.4 Electrochemical Impedance Spectroscopy(EIS) Measurement 44 2-4 Preparation of DSSC 47 2-4.1 Preparation of Photo-anode 47 2-4.2 Preparation of CoS CEs by potential reversal technique 47 2-4.3 DSSC Assembly 48 Chapter 3 Results and Discussion 50 3-1 Determination of Anodic and Cathodic Potential for PR method 50 3-2 PH Effect on The Electrocatalytic Ability of The CoS CEs 53 3-3 Duty Cycle Effect on The Electrocatalytic Ability of The CoS CEs 55 3-3.1 Surface Morphology of The CoS CEs at Different Duty Cycle 55 3-3.2 EDX Spectroscopy of The CoS CEs at Different Duty Cycle 59 3-3.3 XRD Pattern of The CoS CEs at Different Duty Cycle 60 3-3.4 Impedance Spectra of The CoS CEs at Different Duty Cycle 62 3-3.5 Cyclic Voltammogram of The CoS CEs at Different Duty Cycle 65 3-3.6 Cell Performance of The CoS CEs at Different Duty Cycle 67 3-4 Frequency Effect on The Electrocatalytic Ability of The CoS CEs 69 3-4.1 Surface Morphology of The CoS CEs at Different Frequency 69 3-4.2 XRD Pattern of The CoS CEs at Different Frequency 71 3-4.3 Impedance Spectra of The CoS CEs at Different Frequency 72 3-4.4 Cyclic Voltammograms of The CoS CEs at Different Frequency 74 3-4.5 Cell Performance of The CoS CEs at Different Frequency 76 3-5 Coulomb Effect on The Electrocatalytic Ability of The CoS CEs 78 3-5.1 Surface Morphology of The CoS CEs at Different Coulomb 78 3-5.2 Thickness of The CoS CEs at Different Coulomb 80 3-5.3 Impedance Spectra of The CoS CEs at Different Coulomb 81 3-5.4 CV Spectra of The CoS CEs at Different Coulomb 82 3-5.5 Cell Performance of The CoS CEs at Different Coulomb 83 3-6 Photocurrent Density-Voltage Performance about Different ILs 84 3-7 Long-Term Stability Test of DSSCs with The CoS CEs and ILs 88 Chapter 4 Conclusions 93 Chapter 5 Future Work 95 Chapter 6 Referecnce 96

    1. P.Wang, B.W., R. Humphry-Baker, J. E. Moser, J. Teuscher, W. kantlehner, j. Mezger, E V. Stoyanov, S. M. Zakeeruddin, and M. Gratzel (2005). J. Am. Chem. Soc 127, 6850-6856.
    2. H. Vogel, Berlin, 1878.
    3. H. Meier, J. Phys. Chem., 69, 719 (1965)
    4. H. Tributsch, M. Calvin, Photochem. Photobiol., 14, 95(1971)
    5. R. Memming, H. Tributsch, J. Phy. Chem., 75, 562(1971)
    6. H. Gerischer, Photochem. Photobiol., 16, 243(1972).
    7. C. W. Tang, Appl. Phys. Lett., 48, 183(1986)
    8. M.Grätzel, Journal of Photochemistry and Photobiology A: Chemistry 164, 3-14(2004)
    9. J.Desilvestrto, M.Grätzel, L. Kavan, J. Moser, J. Am. Chem. Soc. 107, 2988(1985)
    10. N.Papageorgiou,W.F. Maier, M. Gratzel, J. Electrochem. Soc.144 876–907(1997)
    11. A. Hauch, A. Georg, Electrochim. Acta 46 (2001) 3457–3466.
    12. V. A. Macagno, M. C. Giordano, “Kinetics and Mechanisms of Electrochemical Reactions on Platinum with Solutions of Iodine-Sodium Iodide in Acetonitrile”, Electrochim. Acta, 14, 335 (1969).
    13. V. A. Macagno, M. C. Giordano, “Study on the Iodide-Tri-iodide Redox Electrode in Dimethylsulphoxide”, Electrochim. Acta, 11, 1553 (1966).
    14. N. Papageorgiou, W. F. Maier, M. Grätzel, “An Iodine/Triiodide Reduction Electrocatalyst for Aqueous and Organic Media”, J. Electrochem. Soc., 144, 876(1997).
    15. N.Papageorgiou, “Counter-electrode function in nanocrystalline photoelectrochemical cell configurations”, Coord. Chem. Rev., 248,1421(2004).
    16. G. Wang, Y. Lin, X, Xiao, X. Li, and W. Wang, “X-ray photoelectron spectroscopy analysis of the stability of platinized catalytic electrodes in dye-sensitized solar cells”, Surf. Interface Anal., 36, 1437(2004).
    17. X. Fang, T. Ma, G. Guan, M. Akiyama, T. Kida, and E. Abe, “Effect of the thickness of the Pt film coated on a counter electrode on the performance of a dye-sensitized solar cell”, J. Electroanal. Chem., 570, 257(2004).
    18. X. Fang, T. Ma, G. Guan, M. Akiyama, T. Kida, and E. Abe, “Performancecharacteristics of dye-sensitized solar cells based on counter electrodes with Pt films of different thickness”. J. Photochem. Photobiol. A. Chemistry, 164, 179(2004).
    19. S. S. Kim, Y. C. Nah, Y. Y. Noh, J. Jo, and D. Y. Kim, “Electrodeposited Pt for cost-efficient and flexible dye-sensitized solar cells”, Electrochim. Acta, 51, 3814(2006).
    20. T.C. Wei, C.C. Wan, Y.Y. Wang, Appl Phys Lett 88 (2006).
    21. T.C. Wei, C.C. Wan, Y.Y. Wang, C.M. Chen, H.S. Shiu, J Phys Chem C 111 (2007) 4847-4853.
    22. A. Kay and M. Grätzel, “Low cost photovoltaics modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder”, Sol. Energy Mater. Sol. Cells, 44, 99(1996).
    23. E. Olsen, G. Hagen, and S. E. Lindquist, “Dissolution of platinum in methoxy propionitrile containing LiI/I2”, Sol. Energy Mater. Sol. Cells, 63, 267(2000).
    24. K. Suzuki, M. Yamamoto, M. Kumagai, and S. Yanagida, “Application of Carbon Nanotubes to Counter Electrodes of Dye-sensitized Solar Cells”, Chem. Lett., 32, 28(2003).
    25. H. Lindstrom, A. Holmberg, E. Magnusson, S. E. Lindquist, L. Malmqvist, and A. Hagfeldt, “A New Method for Manufacturing Nanostructured Electrodes on Plastic Substrates”, Nano Lett., 1, 97 (2001).
    26. K. Imoto, K. Takatashi, T. Yamaguchi, T. Komura, J. Nakamura, and K. Murata, High-performance carbon counter electrode for dye-sensitized solar cells”, Sol. Energy Mater. Sol. Cells, 79, 459 (2003).
    27. T. N. Murakami, S. Ito, Q. Wang, M. K. Nazeeruddin, T. Bessho, I. Cesar, P. Liska, R. Humphry-Baker, P. Comte, P. Péchy, and M. Grätzel, “Highly Efficient Dye-Sensitized Solar Cells Based on Carbon Black Counter Electrodes”, J. Electrochem. Soc., 153, a2255(2006).
    28. G. Mengoli, M.M. Niusani, D. Pletcher, S. Valcher, J. Appl. Electrochem., 17, 525(1987).
    29. H. Tang, A. Kitani, and M. Shiotani, J. Appl. Electrochem., 26, 36(1996).
    30. H. Tang, A. Kitani, and M. Shiotani, J. Appl. Electrochem., 26, 45(1996).
    31. F. Jonas, and I. Schrader, “Conductive modifications of polymers with polypyrroles and polythiophenes”, Synth. Met., 41, 831(1991).
    32. M. Dietrich, J. Heinze, G. Heywang, and F. Jonas, “Electrochemical and spectroscopic characterization of polyalkylenedioxythiophenes”, J. Electroanal. Chem., 369, 87(1994).
    33. H. Yamato, W. Wernet, “Stability of polypyrrole and poly (3,4- ethylene dioxy thiophene) for biosensor application”, J. Electroanal. Chem., 397, 163(1995).
    34. Y. Saito, W. Kubo, T. Kitamura, Y. Wada, and S. Yanagida, “I-/I3 - redox reaction behavior on poly(3,4-ethylenedioxythiophene) counter electrode in dye-sensitized solar cells”, J. Photochem. Photobiol. A, 164, 153(2004).
    35. Tzu-Chien Wei, A Study on Dye-sensitized Solar Cell.
    36. T. N. Murakami, S. Ito, Q. Wang, M. K. Nazeeruddin, T. Bessho,I. Cesar, P. Liska, R. Humphry-Baker, P. Comte, P. Pechy and M. Grätzel, J. Electrochem. Soc., 2006, 153, A2255.
    37. Z. Huang, X. H. Liu, K. X. Li, D. M. Li, Y. H. Luo, H. Li,W. B. Song, L. Q. Chen and Q. B. Meng, Electrochem. Commun.,2007, 9, 596.
    38. K. X. Li, Y. H. Luo, Z. X. Yu, M. H. Deng, D. M. Li and Q. B. Meng, Electrochem. Commun., 2009, 11, 1346.
    39. J. K. Chen, K. X. Li, Y. H. Luo, X. Z. Guo, D. M. Li, M. H. Deng,S. Q. Huang and Q. B. Meng, Carbon, 2009, 47, 2704.
    40. W. J. Lee, E. Ramasamy, D. Y. Lee and J. S. Song, ACS Appl. Mater. Interfaces, 2009, 1, 1145.
    41. Y. Saito, W. Kubo, T. Kitamura, Y. Wada and S. Yanagida, J. Photochem. Photobiol., A, 2004, 164, 153.
    42. J. B. Xia, N. Masaki, K. J. Jiang and S. Yanagida, J. Mater. Chem., 2007, 17, 2845.
    43. Q. H. Li, J. H. Wu, Q. W. Tang, Z. Lan, P. J. Li, J. M. Lin and L. Q. Fan, Electrochem. Commun., 2008, 10, 1299.
    44. H. C. Sun, Y. H. Luo, Y. D. Zhang, D. M. Li, Z. X. Yu, K. X. Li and Q. B. Meng, J. Phys. Chem. C, 2010, 114, 11673.
    45. M. Wang, A. M. Anghel, B. Marsan, N. C. Ha, N. Pootrakulchote, S. M. Zakeeruddin, and M. Gratzel, J. Am. Chem. Soc., 131, 15976 (2009)
    46. J. Y. Lin, J. H. Liao, and T. C. Wei, Electrochem Solid St 14 (4), D41 (2011).
    47. J. Y. Lin, J. H. Liao, and S. W. Chou, Electrochimica Acta, 56(2011) 8818-8826.
    48. J. García-Torres, E. Gŏmez, E. Vallěs, J. Appl. Electrochem. 39 (2009) 233.
    49. J.S. Santos, R. atos, F. Trivinho-Strixino, E.C. Pereira, Electrochem. Acta 53 (2007)644.
    50. S.P. Jiang, Y.Z. Chen, J.K. You, T.X. Chen, A.C. Tseng, J. Electrochem. Soc. 137(1990)3374.
    51. W.A. Badawy, F.M. Al-Kharafi, J.R. Al-Ajmi, J. Appl. Electrochem. 30 (2000)693.
    52. U.B. Ceipidor, V. Carunchio, A.M. Girelli, A. Messina, Inorg. Chim. Acta 75(1983) 237.
    53. F.A. Cotton, O.D. Faut, J.T. Mague, Inorg. Chem. 3 (1964) 17.
    54. S. Salama, H. Schugar, T.G. Spiro, Inorg. Chem. 18 (1979) 104.
    55. M. Ghaemi, L. Binder, J. Power Sources 111 (2) (2002) 248.
    56. A. Marlot, P. Kern, D. Landolt, Electrochim. Acta 48 (1) (2002) 29.
    57. K.M. Yin, S.L. Jan, C.C. Lee, Surf. Coat. Technol. 88 (1997) 219.
    58. M. Pushpavanam, M.S. Chandrasekar, Electrochim Acta 53 (2008) 3313-3322.
    59. S.D. Beattie, J.R. Dahn, J. Electrochem. Soc. 150 (2003) A894.
    60. N. Masuko, T.O.a.Y.I. Electrochem. Technol. Innov. New Dev. (1996).
    61. H.C. Sun, D. Qin, S.Q. Huang, X.Z. Guo, D.M. Li, Y.H. Luo, Q.B. Meng, Energ Environ Sci 4 (2011) 2630-2637.
    62. S.M. Zakeeruddin, M. Gratzel, Adv Funct Mater 19 (2009) 2187-2202.
    63. S. Krishnan, L.V.N.R. Ganapatibhotla, J.P. Zheng, D. Roy, Chem Mater 22 (2010) 6347-6360.
    64. Peter Wasserschied, Thomas Welton, “Ionic liquid in synthesis”, Wiley, 2002.
    65. S.M. Zakeeruddin, D.B. Kuang, C. Klein, Z.P. Zhang, S. Ito, J.E. Moser, M. Gratzel, Small 3 (2007) 2094-2102.
    66. S.M. Zakeeruddin, P. Wang, B. Wenger, R. Humphry-Baker, J.E. Moser, J. Teuscher, W. Kantlehner, J. Mezger, E.V. Stoyanov, M. Gratzel, J Am Chem Soc 127 (2005) 6850-6856.
    67. M. Watanabe, R. Kawano, H. Matsui, C. Matsuyama, A. Sato, M.A.B.H. Susan, N. Tanabe, J Photoch Photobio A 164 (2004) 87-92.
    68. H. Matsui, K. Okada, T. Kawashima, T. Ezure, N. Tanabe, R. Kawano, M. Watanabe, Journal of Photochemistry and Photobiology A: Chemistry 164 (2004) 129-135.
    69. M. Watanabe, R. Kawano, Chem Commun (2005) 2107-2109.
    70. P. Wang, S.M. Zakeeruddin, R. Humphry-Baker, M. Grätzel, Chem Mater 16 (2004) 2694-2696.
    71. Q. Dai, D.B. Menzies, D.R. MacFarlane, S.R. Batten, S. Forsyth, L. Spiccia, Y.B. Cheng, M. Forsyth, Cr Chim 9 (2006) 617-621.
    72. S.M. Zakeeruddin, P. Wang, J.E. Moser, M. Gratzel, J Phys Chem B 107 (2003) 13280-13285.
    73. S.M. Zakeeruddin, D.B. Kuang, P. Wang, S. Ito, M. Gratzel, J Am Chem Soc 128 (2006) 7732-7733.
    74. Y. Bai, Y.M. Cao, J. Zhang, M. Wang, R.Z. Li, P. Wang, S.M. Zakeeruddin, M. Gratzel, Nat Mater 7 (2008) 626-630.
    75. F.-T. Kong, S.-Y. Dai, K.-J. Wang, Advances in OptoElectronics 2007 (2007).
    76. L. Kloo, H. Paulsson, A. Hagfeldt, J Phys Chem B 107 (2003) 13665-13670.
    77. P. Wang, S.M. Zakeeruddin, J.-E. Moser, R. Humphry-Baker, M. Grätzel, J Am Chem Soc 126 (2004) 7164-7165.
    78. S. Yanagida, W. Kubo, T. Kitamura, K. Hanabusa, Y. Wada, Chem Commun (2002) 374-375.
    79. S.M. Zakeeruddin, P. Wang, P. Comte, I. Exnar, M. Gratzel, J Am Chem Soc 125 (2003) 1166-1167.
    80. P. Wang, C. Klein, J.-E. Moser, R. Humphry-Baker, N.-L. Cevey-Ha, R. Charvet, P. Comte, S.M. Zakeeruddin, M. Grätzel, The Journal of Physical Chemistry B 108 (2004) 17553-17559.
    81. N. Mohmeyer, D. Kuang, P. Wang, H.-W. Schmidt, S.M. Zakeeruddin, M. Gratzel, J Mater Chem 16 (2006) 2978-2983.
    82. F. Mazille, Z. Fei, D. Kuang, D. Zhao, S.M. Zakeeruddin, M. Grätzel, P.J. Dyson, Inorganic Chemistry 45 (2006) 1585-1590.
    83. Huei-Ru Jhong, The study of deep eutectic solvents and their applications to nonvolatile electrolytes for dye-sensitized solar cells.
    84. http://www.metrohm-autolab.com
    85. T. C. Wei, C. C. Wan, and Y. Y. Wang, Appl. Phys. Lett., 88, 103122 (2006).
    86. http://tw.knowledge.yahoo.com/question/question?qid=1206041906998
    87. A.M. Alfantazi, J.H. Huang, C. Kargl-Simard, M. Oliazadeh, Hydrometallurgy 75 (2004) 77-90.
    88. 胡啟章, 電化學原理與方法, Chapter 6-2, P.104.
    89. S.A. Sapp, C.M. Elliott, C. Contado, S. Caramori, C.A. Bignozzi, J Am Chem Soc 124 (2002) 11215-11222.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE