簡易檢索 / 詳目顯示

研究生: 詹美齡
Meei-Ling Jan
論文名稱: 非侵入式分子影像造影系統與影像融合自動對位方法的研發
Development of Non-invasive Imaging Systems and a 3D Automatic Registration Method for Molecular Imaging Applications
指導教授: 莊克士
Keh-Shih Chuang
口試委員:
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 90
中文關鍵詞: 乳房造影分子影像影像融合影像對位microPETmicroCT正子放射乳房造影
外文關鍵詞: breast imaging, molecular imaging, image fusion, image registration, microPET, microCT, Positron emission mammography
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 分子影像是新興的生醫研究領域。它是一種以非入侵式影像方式,顯示活體內分子或基因層次的空間與時間功能訊息。分子影像的研究進展,能夠增加人類對疾病的認識與了解,進而提升對疾病早期診斷的能力,並加速藥物的開發。分子影像的成功發展,需跨領域地結合化學、生物、物理、醫藥等知識。在這個論文研究中, 我們嘗試發揮生醫物理的專業,開發研製非侵入式造影系統、研究分子影像的性能精進及影像融合等相關軟硬體的影像技術,希望能有益於分子影像的應用。
    在核能研究所,我們研製了一部專為小動物實驗和植物造影用的positron emission Imager (PEImager)。這部有四個偵檢頭的PEImager具有平面和斷層掃描功能。PEImager的平面投影掃描模式,不旋轉偵檢頭可以獲得二維平面影像。此平面影像在中心或離心處的空間解析度並無顯著不同,其平均空間解析度為3.11 mm FWHM (full width of half maximum)。此模式可以應用於觀察小動物或植物內影像顯示劑(imaging agent)的動態分佈。PEImager的斷層掃描,需旋轉偵檢系統擷取足夠的數據做影像重建,以獲得三維斷層影像。此系統斷層影像的空間解析度在中心點為2.73 mm FWHM,在20 mm離心處,空間解析度降為3.48 mm FWHM。斷層影像模式可以應用於有較高空間解析需求的造影研究。除了傳統的平面和斷層影像重建外,我們也開發了一種稱為planar tomography的影像重建方法,此方法可以重建平面投影數據,即使不旋轉偵檢頭,亦能獲得三維斷層影像。planar tomography的空間解析度在X, Y方向上,與傳統斷層影像無顯著差異。但在Z方向上,planar tomography的空間解析度是傳統斷層影像的2.63倍。在考慮偵檢效率、衰減及幾何等因素下,利用planar tomography可以量測並估計乳房假體內熱點的位置與大小。與傳統聚焦平面重建方法比較,planar tomography有較佳的影像對比品質與腫瘤檢出能力。
    在臨床前動物造影研究上,為融合microPET、microCT 和 microSPECT的造影訊息,我們開發了軟體方式的自動對位方法。這個三維自動對位方法簡單、數據無需前置與後續處理、無需使用者主觀介入、也與造影物體無關。此對位方法已成功應用於microPET/CT、microPET/CT/SPECT的假體和動物造影的影像融合。該方法最大對位誤差約為1個體素大小。除了以軟體方式融合microPET/CT的影像對位方法研究外,以硬體方式結合microPET/CT造影與影像融合的計畫正在核能研究所進行。為達成此計畫,我們研製了一部microCT系統,可以與Concode’s microPET R4合併為microPET/CT系統。這台microPET/CT具有內建的對位矩陣,可以提供解剖性CT影像作為microPET影像的參考。這部microPET/CT預期將有助於分子影像的定性與定量研究,並將在藥物開發的臨床前動物實驗上扮演重要的角色。


    Molecular imaging is a rapidly emerging biomedical research field, in which the images produced the noninvasive visualization in space and time of normal as well as abnormal cellular processes at a molecular or genetic level of function. Advancements arising from this research can enhance our knowledge of disease, lead to earlier disease detection and accelerate drug discovery. At the imaging system level, many challenges, such as to improve imaging performance and to integrate molecular imaging studies, remain in molecular imaging. In this dissertation, we have investigated both software and hardware techniques to develop non-invasive imaging systems for molecular imaging applications.
    We have successfully constructed a positron emission imager-PEImager in the Institute of Nuclear Energy Research (INER) for imaging small animals and plants. The PEImager can be used to monitor living objects with planar and tomographic imaging modes. For planar projection imaging acquisition mode, the average spatial resolution is 3.11 mm FWHM (full width of half maximum). There are no significant resolution differences through center to peripheral region of the image. The planar imaging can be applied to dynamic studies of small animals or plants. For collecting data using the tomographic imaging mode, the scanner can be rotated to acquire sufficient views to reconstruct a full volume images. The spatial resolution is 2.73 mm FWHM at the axis of rotation and 3.48 mm FWHM at 20 mm away from the center in tomographic imaging mode. The tomographic imaging can be used in studies, which require more spatial information in images. A planar tomography method was developed also to reconstruct projection data to obtain tomographic images without rotating detectors. The resolutions in the X or Y directions do not differ significantly between planar tomography and conventional tomography. However, The mean FWHM of planar tomography in the Z direction was 2.63 times that of conventional tomography. Locations and sizes of hot spots in a breast phantom can be estimated by using this planar tomography with consideration of efficiency of detector elements, attenuation and geometric factors. Compared with conventional focal-plane reconstruction, the images using planar tomography have better quality of contrast, and have greater tumor-detection capability.
    In order to integrate multi-modality molecular imaging studies, a software approach to register animal images among microPET, microCT and microSPECT modalities was developed. The 3D registration method is automatic, simple, and object independent. It does not depend on any preparation and post-processing of data sets and requires no user intervention. The 3D registration method is successfully applied to microPET/CT, microPET/CT/SPECT fusion for phantom and animal studies. The maximum registration errors of this method were one voxel for microPET/CT fusion and microPET/SPECT fusion. Besides the software approach for image fusion, a hardware approach is processing by building integrated microPET/CT scanner in the INER. An in-house microCT was constructed to combine with a microPET R4 for this purpose. The availability of microPET/CT scanner, which provide inherent, co-registered CT images as anatomic reference for PET images, is expected to benefit both qualitative and quantitative molecular imaging studies, and to play a key role in drug discovery, development, and delivery at the pre-clinical level.

    ABSTRACT ACKNOWLEDGEMENTS CONTENTS Chapter 1: Introduction 1.1 Molecular imaging technologies 1.2 Principle of positron emission tomography 1.3 Principle of X-ray computed tomography 1.4 Integration of functional and structural images 1.5 Summary Chapter 2: Development of a positron emission imager for functional imaging 2.1 Introduction 2.2 System description 2.2.1 Detectors and electronics 2.2.2 Imaging reconstructions 2.3 System performance evaluation 2.3.1 Count-rate capability 2.3.2 Spatial resolution 2.4 Imaging results 2.4.1 Phantom imaging 2.4.2 Small animal imaging 2.4.3 Plant imaging 2.5 Discussion Chapter 3: Feasibility study of using a positron emission imager for Positron Emission Mammography 3.1 Introduction 3.2 Reconstruction algorithm of planar tomography 3.3 calibrating efficiencies of the detectors 3.4 Spatial resolution 3.5 Breast-phantom studies 3.5.1 Estimation of location and size of tumor 3.5.2 Evaluation of tumor-detection ability 3.6 Discussion Chapter 4: Development of a 3D registration method for functional/anatomical images fusion 4.1 Introduction 4.2 Registration method 4.3 Scanners for MicroPET, MicroCT, and MicroSPECT Imaging 4.4 Designs of animal holder and calibration phantom 4.5 Registration-error evaluation 4.6 Results 4.6.1 PET-CT fusion of phantom images 4.6.2 PET-CT fusion of mice images 4.6.3 PET-CT-SPECT fusion of rat images 4.7 Discussion Chapter 5: Summary and Future Work References Appendix

    1. Adler LP, Faulhaber PF, Schnur KC, et al.; "Axillary lymph node metastases: screening with [F-18]2-deoxy-2-fluoro-D-glucose (FDG) PET," Radiology, 203, pp. 323-327, 1997.
    2. Apuzzo MLJ, Chandirasoma PT, Cohen D, Zee CS, and Zelman V; “Computed imaging stereotaxy: experience and perspective related to 500 procedures applied to brain masses”, Neurosurg, 20, pp 930-937, 1987.
    3. Blasberg R;”Imaging gene expression and endogenous molecular processes: molecular imaging”, J Cereb Blood Flow Metab, 22, pp. 1157–64, 2002.
    4. Borah B, Gross GJ, Dufresne TE, et al.;; “Three-dimensional microimaging (microMRI and microCT), finite element modeling, and rapid prototyping provide unique insights into bone architecture in osteoporosis”, Anat. Rec., 265, pp. 101–110, 2001.
    5. Bremer C and Weissleder R; “In vivo imaging of gene expression”, Acad Radiol, 8, pp.15–23, 2001.
    6. Bryan RN, “Mouse genomic imaging laboratories: an opportunity for radiology to move from the bedside to the bench”, Acad Radiol, 8, pp. 295–298, 2001.
    7. Burns HD, Hamill TG, Eng WS, et al. “Positron emission tomography neuroreceptor imaging as a tool in drug discovery, research and development”. Current Opinion in Chemical Biology, 3; 388-394, 1999.
    8. Campbell DB; “The role of Radiopharmaceutical imaging in streamlining the drug development process”. J. Nucl. Med. 41, 163-169, 1997.
    9. Chatziioannou AF; “PET Scanners Dedicated to Molecular Imaging of Small Animal Models”, Molecular Imaging and Biology, 4, pp. 47–63, 2002.
    10. Cherry SR; “In vivo molecular and genomic imaging: new challenges for imaging physics”, Phys Med Biol, 49, R13-R48, 2004.
    11. Cherry SR and Gambhir S; “ Use of Positron Emssion Tomography in Animal Research”, Institute for Laboratory Animal Research Journal, 42, pp 219-232, 2001.
    12. Cherry SR;”Fundamentals of positron emission tomography and applications in preclinical drug development”, J Clin Pharmacol, 41, pp. 482–491, 2001.
    13. Cherry SR, Shao Y, Silverman RW, et al., “MicroPET:a high resolution PET scanner for imaging small animals”, IEEE Trans. Nucl. Sci., 44, 1161-1166, 1997.
    14. Chin R Jr, Ward R, Keyes JW, et al; “Mediastinal staging of non-small-cell lung cancer with positron emission tomography”, Am J Respir Crit Care Med, 152, pp. 2090-2096, 1995.
    15. Chuang KS, Jan ML, Wu J, Chen S, Ni YC, and Fu YK; “The Thresholding MLEM Algorithm”, J. Med. Biol. Eng., 24, pp. 85-91, 2004.
    16. Crowe JP, Adler LP, Shenk RR, et al.; “Positron emission tomography and breast masses-comparison with clinical, mammographic, and pathological findings “, Annals of Surgical Oncology, 1, pp. 132-140, 1994.
    17. Dettmar CAR, Jeavons AP, Chandler RA and Smart R. “QUAD-HIDAC, a next generation PET camera for small-animal imaging”, Symposium of high resolution imaging in small animals with PET, MR and other modalities, Amsterdam, Sep. 27-29, 1999.
    18. Doshi NK, Shao YP, Silverman RW, et al.; “Design and evaluation of an LSO PET detector for breast cancer imaging,” Med. Phys., 27, pp. 1535-1543, 2000.
    19. Ell PJ and von Schulthess GK; “ PET/CT: a new road map”, Eur J Nucl Med, 29, pp. 719-720, 2002.
    20. Erlandsson K, Esser PD, Strand SE, Heertum RL “3D reconstruction for a multi-ring PET scanner by single-slice rebinning and axial deconvolution”, Phys. Med. Biol, 39, 619-629, 1994.
    21. Fattori E, Cappelletti M, Costa P, et al; “Defective inflammatory response in interleukin 6-deficient mice”, J Exp Med, 180, 1243-1250, 1994.
    22. Feldkamp LA, Davis LC, Kress JW;“Practical Cone-Beam Algorithm”, J.Opt.Soc.Am. A, 1, pp.612-619, 1984.
    23. Gambhir SS, “Molecular Imaging of Cancer with Positron Emission Tomography”, Nature Reviews: Cancer, 2, pp. 683-693, 2002.
    24. Freifelder R and Karp JS; “Dedicated PET scanners for breast imaging,” Phys. Med. Bio., 42, pp. 2463-2480, 1997.
    25. Gillies RJ, “In vivo molecular imaging”, J Cell Biochem,87, pp. 231–238, 2002.
    26. Giros B, Jaber M, Jones SR, Wightman RM, Caron MG; “ Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter”, Nature, 379, pp. 606-612, 1996.
    27. Green MV, Seidel J, Vaquero JJ, Jagoda E, Lee I, Eckelman WC; “High resolution PET, SPECT and projection imaging in small animals”, Comp Med Imag Graph, 25, pp. 79-86, 2001.
    28. Gu L, Tseng S, Horner RM, Tam C, Loda M, Rollins BJ, “Control of TH2 polarization by the chemokine monocyte chemoattractant protein-1”, Nature, 404, pp. 407-411, 2000.
    29. Hayakawa N, Uemura K, Ishiwata K, Shimada Y, Ogi N, Nagaoka T et al. ;“A PET-MRI registration technique for PET studies of the rat brain”, Nucl Med Biol, 27, pp. 121–125, 2000.
    30. Hill DLG, Batchelor PG, Holden M, Hawkes DJ; “Medical Image Registration”, Phys Meds Bio, 46, pp R1-45, 2001.
    31. Hill DLG, Hawkes DJ, Crossman JE, et al.; “Registration of MR and CT images for skull base surgery using point-like anatomical features”, Br J Radiol, 64, pp 1030-1035, 1991.
    32. Huber JS, Derenzo SE, Qi J, Moses WW, Huesman RH, Budinger TF; “Conceptual design of a compact positron tomograph for prostate Imaging”, IEEE Trans. Nucl. Sci., 48, pp. 1506–1511, 2001.
    33. Hubner KF, Smith GT, Thie JA, et al.; “The Potential of F-18-FDG PET in Breast Cancer. Detection of Primary Lesions, Axillary Lymph Node Metastases, or Distant Metastases”, Clinical Positron Imaging, 3, pp.197-205, 2000.
    34. Ishioka NS, Matsuoka H, Watanabe S, et al. “Production of positron emitters and application of their labeled compounds to plant studies”, J. Radio. and Nucl. Chem., 239, 417-421, 1999.
    35. Iwata K, Patt BE, Li J, Parnham KB, Vandehei T, Iwanczyk JS, et al; “Dedicated Small Animal MicroSPECT/CT System with Stationary Horizontal Animal Position”, Conference Records of IEEE NSS-MIC, Portland, Oregon, Oct. 19-25, 2003.
    36. Jan ML, Chuang KS, Ni YC, et al; “Feasibility Study of Using PEImager Scanner for Positron Emission Mammography”;IEEE Transaction on Nuclear Science, (SCI) (in press), 2005a.
    37. Jan ML, Chuang KS, Chen KW, et al; “A Three-Dimensional Registration Method for Automated Fusion of Micro PET-CT-SPECT Whole-Body Images”, IEEE Transaction on Medical Imaging, (SCI) (in press), 2005b.
    38. Jan ML, Chen KW, Ni YC, et al; “Development of a coaxial x-ray tomography system to juxtapose with microPET scanner for small animal PET/CT imaging”, Annual Conference of the Academy of Molecular Imaging, Orlando, Florida, March 25-29, 2005c.
    39. Jan ML, Ni YC, Chen KW et al; “Integrated CT-PET System for Small Animal Imaging”, the Fourth Annual Meeting of the Society for Molecular Imaging, Cologne, Germany, Sep. 7-10, 2005d.
    40. Jan ML, Liang HC, Tang JS et al; “The Development of INER Rotating Positron Emission Tomography Scanner for Animal Imaging”, Ann. Nucl. Med. and Sci., 15, 13-20, 2002.
    41. Jan ML, Liang HC, Huang SW et al; “Preliminary Results from ARO-PET”; 2001 IEEE Nuclear Science Symposium and Medical Imaging Conference, San Diego, California, November 4-10, 2001.
    42. Jan ML, Liang HC, Huang SW et al. “Recent Research on the ARO-Positron Emission Tomography”; Proc SPIE Int Soc Opt Eng, Society of Photo-Optical Instrumentation Engineers, 4080, 208-213, 2000.
    43. Jochelson M, “Breast cancer imaging: the future”, Seminars in Oncology, 28, pp. 221-228, 2001.
    44. Kak AC and Slaney M “Principles of computerized tomographic imaging”, Ch. 3, IEEE Press, New York, 1987.
    45. Kennel SJ, et al.; “High resolution computed tomography and MRI for monitoring lung tumor growth in mice undergoing radioimmunotherapy: correlation with histology”, Med. Phys., 27, pp. 1101–1107, 2000.
    46. Kinahan PE and Rogers JG, “Analytic three-dimensional image reconstruction using all detected event”, IEEE Trans. Nucl. Sci., 36, pp. 964-968, 1989.
    47. Kluetz PG, Meltzer CC, Villemagne VL, et al; “Combined PET/CT imaging in oncology: Impact on patient management”, Clin. Positron Imaging, 3, pp. 223–230, 2000.
    48. Knoess C, Siegel S, Smith A, et al; “Performance evaluation of the microPET R4 PET scanner for rodents”, Eur J Nucl Med Mol Imag, 30, pp 737-747, 2003.
    49. Knoll GF; “Radiation detection and measurement”, Appendix A, 3rd edition, John Wiley & Sons, Inc. 2000.
    50. Kume T, Matsuhashi S, Shimazu M, et al. “Uptake and transport of positron-emitting tracer(18F) in plants”, Applied Radiation and Isotopes, 48, 1035-1043,1997.
    51. Lammertsma AA, “PET scanners for small animals”, J. Nucl. Med., 36, 2391-2391, 1995.
    52. Lecomte R, Cadorette J, Rodrigue S, et al., “Initial results from the Sherbrooke Avalanche Photodiode Positron Tomograph”, IEEE Trans. Nucl. Sci, 43, 1952-1957, 1996.
    53. LeCroy manual; “An introduction to CAMAC”, LeCroy 1994 Research Instrumentation Catalog.
    54. Levoy M; “A hybrid ray tracer for rendering polygon and volume data”, IEEE Comput Graph, 10, pp. 33-40, 1990.
    55. MacDonald LR, Patt BE, Iwanczyk JS, et al; “Pinhole SPECT of Mice Using the LumaGEM Gamma Camera”, IEEE Trans. Nucl. Sci., 48, 2001.
    56. MacLaren DC, Toyokuni T, Cherry SR, et al. “PET imaging of transgene expression”. Biol. Psychiatry, 48; 337-348, 2000.
    57. Mahmood U and Weissleder R; “Some Tools for Molecular Imaging”, Acad Radiol, 9, pp. 629–631, 2002.
    58. Matrisian LM, Cunha GR, Mohla S; “Epithelial-stromal interactions and tumor progression: meeting summary and future directions”, Cancer Res, 61, pp.3844–3846, 2001.
    59. Moses WW, Virador PRG, Derenzo SE, Huesman RH, Bundinger TF, “Design o f a high-resolution, high-sensitivity PET camera for human brains and small animals”, IEEE Trans. Nucl. Sci., 44, 1487-1491, 1997.
    60. Moses WW, Budinger TF, Huesman RH, et al.; “PET camera designs for imaging breast cancer and axillary node involvement,” J. Nucl. Med., 36, pp. 69P, 1995.
    61. Muehllehner G, Buchin MP, and Dudek JH; “Performance parameters of a positron imaging camera”, IEEE Trans. Nucl. Sci., 23, pp. 528–537, 1976.
    62. Murthy K, Aznar M, Bergman AM, et al.; “Positron emission mammographic instrument: Initial results,” Radiology, 215, pp. 280-285, 2000.
    63. Myers R; “The biological application of small animal PET imaging”, Nucl Med Bio, 28, pp. 585–593, 2001.
    64. Nakanishi TM, Okuni Y, Furukawa J, et al; “Water movement in a plant sample by neutron beam analysis as well as positron emission tracer imaging system”, J. Radio. and Nucl. Chem., 255, 149-153, 2003.
    65. Okamura H “Fast data acquisition system for the spectrometer SMART at RIKEN”, Nucl. Instr. Meth., 443, 194-196, 2000.
    66. Phillips RL, London ED, Links JM, and Cascella NG; “Program for PET image alignment: Effect of calculated differences in cerebral metabolic rates for glucose”, J Nucl Med, 31, pp 2052-2057, 1990.
    67. Poltorak A, He X, Smirnova I, et al; “Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene”, Science, 282, 2085-2088, 1998.
    68. Raylman RR, Majewski S, Wojcik R, et al.; “The potential role of positron emission mammography for detection of breast cancer. A phantom study,” Med. Phys., 27, pp. 1943-1954, 2000.
    69. Schad LR, Boesecke R, Schilegel W, et al; “Three dimensional image correlation of CT, MR and PET studies in radiotherapy planning of brain tumors”, J Comput Assist Tomogr, 11, pp 948-954, 1987.
    70. Schulthess GK, Pelc NJ; “Integrated-Modality Imaging: The Best of Both Worlds”, Acad Radiol, 9, pp. 1241–1244, 2002.
    71. Service RF;” New probes open windows on gene expression, and more”, Science, 280, pp. 1010–1011. 1998.
    72. Shepp LA, Vardi Y; “Maximum likelihood reconstruction for emission tomography”, IEEE Trans. Med. Imaging, MI-1, pp. 113-122, 1982.
    73. Siegel S, Vaquero JJ, Aloj L, et al., “Initial results from a PET/Planar small animal imaging system”, IEEE Trans. Nucl. Sci., 46, 571-575, 1999.
    74. Smith BD, “Image reconstruction from cone-beam projection: Necessary and Sufficient conditions and reconstruction methods”, IEEE Trans. Med. Imaging, MI-4, pp. 14-25, 1985.
    75. Stokking R, Zuiderveld KJ, Hulshoff Pol HE, et al; “Integrated visualization of SPECT and MR images for frontal lobe damaged regions”, in Robb RA (ed): Visualization in Biomedical Computing , 2359, Bellingham WA: SPIE Press, pp. 282-290, 1994.
    76. Stout D, Chow P, Silverman B, Leahy R, Lewis X, Gambhir S, and Chatziioannou A; “Creating a whole body digital mouse atlas with PET, CT and cryosection images”, AMI Annual Conference, San Diego, CA, Oct. 23-27, 2002.
    77. Sun YL, Jan ML, Kao PF, Wen-Chen Chang, et al; “Dynamic accumulation and distribution of [18F]FDG in human thyroid cancer model on nude mice: by INER animal rotating PET scanner and micro-autoradiography”, Ann. Nucl. Med. Sci., 15, pp.21-26, 2002.
    78. Sun YL, Jan ML, Kao PF, Fan KH, et al; “Coincidence planar imaging for dynamic [18F]FDG uptake in nude mice with tumors and inflammation: correlated with histopathlogy and micro-autoradiography”, Kaohsiung J Med Sci, 21, pp.258-266, 2005.
    79. Thompson CJ, Murthy K, Weinberg IN, and Mako F; "Feasibility study for positron emission mammography," Med. Phys, 21, pp. 529-538, 1994.
    80. Townsend DW, Beyer T, and Blodgett TM;” PET/CT Scanners: A hardware approach to image fusion”, Semi Nucl Med, XXXIII, pp 193-204, 2003.
    81. Uchida H., Okamoto T., Ohmura T., et al.; “A compact planar positron imaging system”, Nucl. Instr. Meth. Phys Res. A, 516, pp. 564-574, 2004.
    82. Vaalburg, W., Hendrikse, N. H. and de Vries, E. F.;”Drug development, radiolabelled drugs and PET”, Ann Med, 31, pp. 432–437, 1999.
    83. Valk PE, Bailey DL, Townsend DW, Maisey MN; “Positron emission tomography: basic science and clinical practice”, forward, 2nd printing, Springer-Verlag London Limited, 2003.
    84. Van den Elsen PA, “Multimodality matching of brain images”, Doctoral thesis, Utrecht University, the Netherlands, 1993.
    85. Vansteenkiste JF, Stroobants SG, DeLeyn PR, et al; “Lymph node staging in non-small-cell lung cancer with FDG-PET scan: A prospective study on 690 lymph node stations from 68 patients”, J Clin Oncol, 16, pp. 2142-2149, 1998.
    86. Vaquero JJ, Desco M, Pascau J, Santos A, Lee I, Seidel J, and Green MV; “PET, CT, and MR Image Registration of the Rat Brain and Skull,” IEEE Trans. Nucl. Sci., 48, pp. 1440-1445, 2001.
    87. Vardi Y, Shepp LA, Kaufman LA; “Statistical model for positron emission tomography”, J. Am. Stat. Assoc., 80, pp. 8-20, 1985.
    88. Weber S, Herzog H, Coenen H, et al, “Evaluation of the TierPET system”, IEEE Trans. Nucl. Sci., 46, 1177-1183, 1999.
    89. Weinberg I, Majewski S, Weisenberger A, et al.; “Preliminary results for positron emission mammography - real-time functional breast imaging in a conventional mammography gantry,” Euro. J. Nucl. Med., 23, pp. 804-806, 1996.
    90. Weissleder R, Mahmood U; “Molecular imaging”, Radiology, 219, pp. 316–333, 2001.
    91. Weissleder, www.mgh-cmir.org, RSNA 2000 Pendergrass Lecture: Molecular Imaging, 2000.
    92. Weissleder R; “Molecular imaging: exploring the next frontier”, Radiology, 212, pp. 609–614, 1999.
    93. Weng E, Tran L, Rege S; “Accuracy and clinical impact of mediastinal lymph node staging with FDG-PET imaging in potentially resectable lung cancer”, Am J Clin Oncol, 23, pp. 47-52, 2000.
    94. Wilson MW, and Mountz JM; “A reference system for neuroanatomical localization on functional reconstructed cerebral images”, J Comput Assist Tomogr , 13, pp 174-178, 1989.
    95. Yamashita T. “Current status of PET in Hamamatsu”; documentation from T. Yamashita. 1999.
    96. Zanzonico P; “Positron Emission Tomography: A Review of Basic Principles, Scanner Design and Performance, and Current Systems”, Semi Nucl Med, 34, pp. 87-111, 2004.
    97. Zeng GL; “Image reconstruction-a tutorial”, Comp Med Imag Graph, 25, pp. 97-103, 2001.
    98. Zhang J, Levesque MF, Wilson CL, Harper RM, Engel J, Lufkin R, and Behnke EJ, “Multimodality imaging of brain structures for stereotactic surgery”, Radiol, 175, pp 435-441, 1990.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE