簡易檢索 / 詳目顯示

研究生: 林新智
論文名稱: OFDM系統中利用Reed-Solomon編碼之低複雜度選擇性映射式峰值對平均功率比降低技術
A Low-Complexity SLM-Based Peak-to-Average Power Ratio Reduction Technique Using Reed-Solomon Coding for OFDM Systems
指導教授: 王晉良
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 42
中文關鍵詞: 正交分頻多工峰值對平均功率比選擇性映射式
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 正交分頻多工(orthogonal frequency-division multiplexing,簡稱OFDM)是一種非常有效率的多載波系統,這個系統的傳輸效率非常高,並且也能有效的對抗多重路徑通道效應。但是OFDM系統的輸出信號會產生峰值對平均功率比(peak-to-average power ratio,簡稱PAPR) 的問題。為了解決這個問題,因而發展出許多的峰值對平均功率比降低技術。如選擇性映射式(selective mapping,簡稱SLM)是一種非常重要的峰值對平均功率比降低技術,但是,這方法卻有著需要傳送額外訊息 (side information),和高計算複雜度的缺點。在這篇論文中,我們提出了利用Reed-Solomon編碼之低複雜度選擇性映射式峰值對平均功率比降低技術。這個方法不需要傳送額外訊息。主要作法是在完成通道編碼之後,犧牲了一部分錯誤更正能力使得OFDM訊號在不同載波上的傳送訊號產生錯誤,產生不同的候選訊號,並在這些後選訊號中,選擇一個峰值對平均功率比最低的候選訊號來進行傳送,藉此來降低高鋒值對平均功率的機率。為了降低整體的複雜度,我們先產生隨機的訊號,並將這些隨機的訊號存在唯讀記憶體(ROM)中。如此一來,在資料序列的部份經過處理之後,只要加上唯讀記憶體中不同的隨機訊號所產生不同的結果,便可以選擇其中一個峰值對平均功率比最低的序列傳送。藉由這個方法,我們就可以有效的降低峰值對平均功率比。而所需要的條件,只要一個唯讀記憶體、一些加法器,和一個快速傅利葉反轉換(inverse fast Fourier transform,簡稱IFFT)模組即可。經由模擬和比較結果,我們也可看出所提出的低複雜度技術,卻實能維持不錯的峰值對平均功率比之表現。


    Orthogonal frequency division multiplexing (OFDM) is an efficient transmission scheme for multicarrier systems. Its major advantages include high data rate and the immunity to multipath fading channels. One of the major problems associated with OFDM signals is the high peak-to-average power ratio (PAPR), which may cause distortion when the OFDM signals pass through a nonlinear amplifier. A number of techniques have been proposed for PAPR reduction. These techniques can be roughly classified as the signal distortion methods, the coding methods, and the multiple signal representation (MSR) methods. All these methods have their own drawbacks, such as signal distortion, limitation of the number of subcarriers, requirement of side information, and high computational complexity.In this thesis, we propose a new selective mapping (SLM)-based method for PAPR reduction. The proposed method does not suffer the drawbacks mentioned above. By sacrificing a little part of error correcting capacity of channel coding, the proposed SLM-based method generates a set of candidate signals by adding the symbol block after channel coding with a set of different random error patterns. Then the candidate signal with the lowest PAPR is chosen for transmission. To further reduce the complexity of the proposed method, the set of random error patterns are generated in advance and the corresponding IFFT output sequences are prestored in a ROM. Then, the candidate signals of the proposed method can be produced by only one IFFT computation and some extra additions. It is shown that the computational complexity of the proposed SLM-based method is much lower than the ordinary SLM method that needs a set of U IFFT computations, where U is the number of candidate signals. Computer simulation results demonstrate that the proposed method has a reasonable and acceptable performance loss in terms of PAPR reduction and symbol error rate, as compared to the ordinary SLM scheme.

    摘 要 誌 謝 目 錄 第一章 簡介 第二章 峰值對平均功率比的相關降低技術 第三章 利用Reed-Solomon編碼之低複雜度選擇性映射式峰值對平均功率比降低技術 第四章 模擬結果及比較 第五章 結論 附錄 論文英文本

    [1] R. van Nee and R. Prasad, OFDM for Wireless Multimedia Communications. Boston: Artech House, 2000.

    [2] J. Terry and J. Heiskala, OFDM Wireless LANs: A Theoretical and Practical Guide. Sams, 2002.

    [3] ETSI, “Radio broadcasting systems: Digital Audio Broadcasting (DAB) to mobile, portable and fixed receivers,” WTS 300 401 v1.3.2, Sept. 2000.

    [4] ETSI, “Digital Video Broadcasting (DVB): Framing structure, channel coding and modulation for digital terrestrial television,” ETS 300 744 v1.3.2, Sept. 2000.

    [5] IEEE, “part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications,” IEEE Std. 802.11, Aug. 1999.

    [6] ETSI, “Broadcasting Radio Access Networks (BRAN): Requirements and architectures for broadband fixed radio access networks,” TR 1001 177 v1.1.1, May 1998.

    [7] ETSI, “High Performance Radio Local Area Networks (HIPERLAN): Requirements and architectures for wireless ATM access and interconnection,” TR 101 031 v1.1.1, July 1997.

    [8] P. S. Chow, J. C. Tu, and J. M. Cioffi, “Performance evaluation of a multichannel transceiver system for ADSL and VHDSL services,” IEEE J. Selected Areas Commun., vol. 9, pp. 909-919, Aug. 1991.

    [9] P. S. Chow, J. C. Tu, and J. M. Cioffi, “A discrete multitone transceiver system for HDSL applications,” IEEE J. Select Areas Commun., vol. 9, pp. 909-919, Aug. 1991.

    [10] R. van Nee, “OFDM for high speed wireless network,” IEEE P 802.11-97/123, Nov. 1997.

    [11] C. Tellambura, “Computation of the continuous-time PAR of an OFDM signal with BPSK subcarriers,” IEEE Commun. Letters, vol. 5, no. 5, pp. 185–187, May 2001.

    [12] R. Gross and D. Veeneman, “Clipping distortion in DMT ADSL systems,” Electron Lett., vol.29, pp. 2080-2081, Nov. 1993.

    [13] D. J. G. Mestdagh, P. Spruyt, and B. Biran, “Analysis of clipping effect in DMT-based ADSL system,” in Proc. 1994 IEEE Int. Conf. Commun. (ICC ‘94), New Orleans, LA, May 1997, pp. 293-300.

    [14] R. O’Neill and L. B. Lopes, “Envelop variations and spectral splatter in clipped multicarrier signals,” in Proc. 1995 IEEE Int. Symp. Personal, Indoor and Mobile Radio Commun. (PIMRC ‘95), Toronto, Canada, Sept. 1995, pp. 71-76.

    [15] X. Li and L. J. Cimini, “Effects of clipping and filtering on the performance of OFDM,” IEEE Commun. Lett., vol. 2, pp. 131-133, May 1998.

    [16] T. A. Wilkinson and A. E. Jones, “Minimisation of the peak to mean envelope power ratio of multicarrier transmission schemes by block coding,” in Proc. 1995 IEEE Veh. Technol. Conf. (VTC ‘95), Chicago, IL, July 1995, pp. 825-829.

    [17] X. Li and J. A. Ritcey, “M-sequences for OFDM PAPR reduction and error correction,” Electron Lett., vol. 33, pp. 545-546, July 1997.

    [18] C. Tellambura, “Use of m-sequences for OFDM peak to average power ratio reduction,” Electron Lett., vol. 33, pp. 1300-1301, July 1997.

    [19] T. A. Wilkinson and A. E. Jones, “Minimization of the peak-to-mean envelope power ratio of multicarrier transmission schemes by block coding,” in Proc. 1995 IEEE Vehicular Technology Conference (VTC ‘95), Chicago, July 1995, pp. 825-829.

    [20] K. A. S. Immink, Codes for Mass Data Storage Systems. Amsterdam. The Netherlands: Shannon Foundation Publishers, 1999.

    [21] S. H. Müller and J. B. Huber, “A novel peak power reduction scheme for OFDM,” in Proc. 1997 IEEE Int. Symp. Personal Indoor and Mobile Radio Commun. (PIMRC ‘97), Heisinki, Findland, Sep. 1997, pp. 1090-1094.

    [22] A. D. S. Jayalath and C. Tellambura, “The use of interleaving to reduce the peak-to-average power ratio of an OFDM signal,” in Proc. 2000 IEEE Global Telecommun. Conf. (GLOBECOM ‘00), San Francisco, CA, Nov.-Dec. 2000, pp. 82-86.

    [23] J. A. Davis and J. Jedwab, “Peak-to-mean power control in OFDM, Golay complementary sequences, and Reed-Muller codes,” IEEE Trans. Inform. Theory, vol. 45, pp. 2397-2417, Nov. 1999.

    [24] S. H. Müller and J. B. Huber, “OFDM with reduced peak-to-average power ratio by optimum combination of partial transmit sequences,” Electron Lett., vol. 33, pp. 368-369, Feb. 1997.

    [25] S. D. S Jayalath and C. Tellambura, “Peak-to-average power ratio reduction of an OFDM signal using data permutation with embedded side information,” in Proc. 2001 IEEE International Symposium on Circuits and Systems (ISCAS 2001), Sydney, Australia, vol. 4, May 2001, pp. 562-565.

    [26] S. G. Kang, J. G. Kim and E. K. Joo, “A novel subblock partition scheme for partial transmit sequence OFDM,” IEEE Trans. Broadbasting, vol. 45, pp. 333-338, Sep. 1999.

    [27] R. van Nee, “OFDM codes for peak-to-average power reduction and error correction,” in Proc. 1996 IEEE Global Telecommun. Conf. (GLOBECOM ‘96), London, England, vol. 1, Nov. 1996, pp. 740-744.

    [28] A. Gatherer and M. Polley, “Controlling clipping probability in DMT transmission,” in Proc. 1997 IEEE Asilomar Conf. on Signals, Systems, and computers, Pacific Grove, CA, Nov. 1997, pp. 578-584.

    [29] J. Tellado, “Peak to Average Power Reduction for Multicarrier Modulation,” PhD thesis, Stanford University, 2000.

    [30] S. H. Han and J. H. Lee, “An overview of peak-to-average power ratio reduction techniques for multicarrier transmission,” IEEE Wireless Commun., vol. 12, pp. 56-65, Apr. 2005.

    [31] H. G. Ryu, J. E. Lee and J. S. Park, "Dummy sequence insertion (DSI) for PAPR reduction in the OFDM communication system," IEEE Trans. Consum. Electron., vol.50, no.1, pp.89–94, Feb. 2004.

    [32] S. H. Han and J. H. Lee, “Modified selected mapping technique for PAPR reduction of coded OFDM signal,” IEEE Trans. Broadcasting, vol. 50, pp. 335 – 341, Sep. 2004.

    [33] K. Yang and S. –I. Chang, “Peak-to-average power control in OFDM using standard arrays of linear block codes,” IEEE Commun. Lett., vol. 7, No. 4, pp. 174-176, Apr. 2003.

    [34] Berlekamp, E.R., "The technology of error-correcting codes", Proc. of the IEEE, vol. 68, pp. 564-593. May. 1980.

    [35] Alan V. Oppenheim, Ronald W. Schafer, John R. Buck, Discrete-Time Signal Processing, 2nd edition. Prentice-Hall, Inc., 1999.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE