研究生: |
江忠信 Jhong-Sin Jiang |
---|---|
論文名稱: |
頻率選擇平面應用於平面共振式天線之研究 Designs of Planar Resonator Antennas Based on Frequency Selective Surfaces for Directivity Enhancement and Size Reduction |
指導教授: |
柳克強
Keh-Chyang Leou |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2007 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 142 |
中文關鍵詞: | 頻率選擇平面 、電磁晶體 、高指向性天線 、低旁波瓣位準 |
外文關鍵詞: | frequency selective surface (FSS), electromagnetic bandgap (EBG), Fabry-Perot resonator, directive antenna, sidelobe reduction |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
高指向性天線(High-Directivity Antenna)在微波應用的範圍越來越廣,如:汽車雷達(Avoidance Radar)、衛星通訊網路、短距點對點通訊等。又現在的通訊設備中,都朝著小型、輕量、薄型、高頻、低功率與高性能發展,因此要設計出一兼具這些特點的高指向性天線是有其困難度與必需性的。
平面共振式天線相對於微帶陣列天線而言,是一種兼具平面式與高指向性優點的天線,其不需要使用複雜的餽入網路(Feed Network),所以近年來被提出來期望能取代微帶天線陣列,以解決餽入網路中傳輸線的損耗所造成天線增益降低的缺點。但當平面共振式天線的面積縮小時,會產生旁波瓣(Sidelobe)過大的問題,本研究第一個研究主題即在於解決此問題,在平面共振式天線之共振腔的四周圍平面上,分別加上一對完美電牆與一對完美磁牆,如此可成功的使邊長約為兩倍波長的平面共振式天線之旁波瓣位準(Sidelobe Level)降低於-25 dB,其後本研究並成功的使用四分之波長轉換器(Quarter-wave Transformer)結合完美電牆來實現在現實應用中的完美磁牆。
另一個研究主題是可切換式平面共振式天線的設計,本研究提出一個新穎的想法,以PIN二極體來設計可重組態之頻率選擇平面(Reconfigurable Frequency Selective Surface),並以此成功的設計出可切換式之平面共振式天線,使其具有兩種不同的天線性能(指向性),這樣便能將原本需要兩個獨立天線才能達到的性能,如今只需使用單一個天線就能達成,如此可減少天線使用的數量,達到縮減天線使用面積的目的。
Electromagnetic bandgap (EBG) structures and frequency selective surfaces (FSSs) can be employed to control electromagnetic-wave propagation in special directions. They have been widely employed as superstrates of Fabry-Perot (FP) antennas (or called planar resonator antenna) for low-profile directive antennas to as spatial angular filters. Extensive effects have been made in FP antennas for high directivity without complex feed networks like conventional antenna array.
First, A novel approach for reducing sidelobe levels of compact FP antennas is presented in this study. Perfect electrical conductors (PECs) and Perfect magnetic conductors (PMCs) are employed as cavity sidewalls of FP antennas for reducing the sidelobes caused by reducing the antenna size. A quarter-wave transformer along with a PEC is employed to function as a PMC in this study for real applications. The compact FP antennas with high-directivity (~15 dBi) and low sidelobe levels (-25 dB) both in the E- and H-planes are designed. This antenna can be applied to the antennas of short-range vehicular radars.
Then, A novel design of switchable FP antennas for reducing the antenna area is presented in this study. A reconfigurable FSS is employed as a superstrate of a switchable FP antenna. The switchable FP antenna has two performances in one antenna structure switched by bias voltages of PIN diodes. This antenna will be expect to as the antennas of automotive radars that need both high- and low-directivity antennas.
[1] V. V. Denisenko, A. G. Shubov, A. V. Majorov, E. N. Egorov, and N. K. Kashaev, "Millimeter-wave printed circuit antenna system for automotive applications," 2001 IEEE MTT-S International Microwave Symposium Digest, pp. 2247-2250 vol.3, 2001.
[2] F. Kolak and C. Eswarappa, "A low profile 77 GHz three beam antenna for automotive radar," 2001 IEEE MTT-S International Microwave Symposium Digest, pp. 1107-1110 vol.2, 2001.
[3] H. Ogawa, "24-GHz ultra-wideband short-range impulse radar for vehicular applications," IEEE Consumer Communications and Networking Conferenc, pp. 696-700, 2006.
[4] N. Shino, H. Uchimura, and K. Miyazato, "77GHz band antenna array substrate for short range car radar," 2005 IEEE MTT-S Internationa Microwave Symposium Digest,2005.
[5] K. M. Strohm, H. L. Bloecher, R. Schneider, and J. Wenger, "Development of future short range radar technology," European Radar Conference, pp. 165-168, 2005.
[6] J. Wenger, "Automotive radar - status and perspectives," IEEE Compound Semiconductor Integrated Circuit Symposium, 2005.
[7] A. Mizutani, K. Sakakibara, N. Kikuma, and H. Hirayama, "Grating lobe suppression of narrow-wall slotted hollow waveguide millimeter-wave planar antenna for arbitrarily linear polarization," IEEE Transactions on Antennas and Propagation, vol. 55, pp. 313-320, Feb 2007.
[8] B. D. Nguyen, C. Migliaccio, C. Pichot, K. Yamamoto, and N. Yonemoto, "W-Band Fresnel Zone Plate Reflector for Helicopter Collision Avoidance Radar," IEEE Transactions on Antennas and Propagation, vol. 55, pp. 1452-1456, 2007.
[9] T. K. Wu and W. P. Shillue, "Dichroic design for the orbition VLBI earth station antenna," IEE Proceedings-Microwaves Antennas and Propagation, vol. 141, pp. 181-184, Jun 1994.
[10] C. A. Balanis, Antenna Theory : Analysis and Design, 3 ed.: John Wiley & Sons, Inc., 2005.
[11] M. Thevenot, C. Cheype, A. Reineix, and B. Jecko, "Directive photonic-bandgap antennas," IEEE Transactions on Microwave Theory and Techniques, vol. 47, pp. 2115-2122, Nov 1999.
[12] A. A. Kishk, "One-dimensional electromagnetic bandgap for directivity enhancement of waveguide antennas," Microwave and Optical Technology Letters, vol. 47, pp. 430-434, Dec 2005.
[13] L. Leger, T. Monediere, and B. Jecko, "Enhancement of gain and radiation bandwidth for a planar 1-D EBG antenna," IEEE Microwave and Wireless Components Letters, vol. 15, pp. 573-575, Sep 2005.
[14] A. R. Weily, K. P. Esselle, B. C. Sanders, and T. S. Bird, "High-gain 1D EBG resonator antenna," Microwave and Optical Technology Letters, vol. 47, pp. 107-114, Oct 2005.
[15] Y. J. Lee, W. S. Park, J. Yeo, and R. Mittra, "Directivity enhancement of printed antennas using a class of metamaterial superstrates," Electromagnetics, vol. 26, pp. 203-218, Apr-Jun 2006.
[16] Z. Fangming and L. Qingchun, "High-directivity patch antenna with both perfect magnetic conductor substrate and photonic bandgap cover," Asia-Pacific Conference Proceedings 2005, Microwave Conference Proceedings, 2005.
[17] Z. Fangming, L. Qingchun, H. Sailing, H. Jun, and Y. Zhinong, "A high directivity patch antenna using a PBG cover together with a PBG substrate," 2003 6th International SYmposium on Antennas, Propagation and EM Theory, pp. 92-95, 2003.
[18] M. Thevenot, M. S. Denis, A. Reineix, and B. Jecko, "Design of a new photonic cover to increase antenna directivity," Microwave and Optical Technology Letters, vol. 22, pp. 136-139, Jul 1999.
[19] M. Qiu and S. L. He, "High-directivity patch antenna with both photonic bandgap substrate and photonic bandgap cover," Microwave and Optical Technology Letters, vol. 30, pp. 41-44, Jul 2001.
[20] C. Cheype, C. Serier, M. Thevenot, T. Monediere, A. Reineix, and B. Jecko, "An electromagnetic bandgap resonator antenna," IEEE Transactions on Antennas and Propagation, vol. 50, pp. 1285-1290, Sep 2002.
[21] Y. J. Lee, J. Yeo, K. D. Ko, R. Mittra, Y. Lee, and W. S. Park, "A novel design technique for control of defect frequencies of an electromagnetic bandgap (EBG) superstrate for dual-band directivity enhancement," Microwave and Optical Technology Letters, vol. 42, pp. 25-31, Jul 2004.
[22] Y. J. Lee, J. Yeo, R. Mittra, and W. S. Park, "Application of electromagnetic bandgap (EBG) superstrates with controllable defects for a class of patch antennas as spatial angular filters," IEEE Transactions on Antennas and Propagation, vol. 53, pp. 224-235, Jan 2005.
[23] A. R. Weily, L. Horvath, K. P. Esselle, B. C. Sanders, and T. S. Bird, "A planar resonator antenna based on a woodpile EBG material," IEEE Transactions on Antennas and Propagation, vol. 53, pp. 216-223, Jan 2005.
[24] F. Frezza, P. Nocito, L. Pajewski, and G. Schettini, "FMM and FDTD analysis of a woodpile 3D-EBG superstrate for patch antennas," Microwave and Optical Technology Letters, vol. 48, pp. 2595-2598, Dec 2006.
[25] N. Guerin, C. Hafner, X. Cui, and R. Vahldieck, "Compact directive antennas using frequency-selective surfaces (FSS)," Asia-Pacific Conference Proceedings 2005, Microwave Conference Proceedings, 2005.
[26] D. H. Lee, Y. J. Lee, J. Yeo, R. Mittra, and W. S. Park, "Novel Thin Dual-band Frequency Selective Surface (FSS) Superstrate for Directivity Enhancement," IEEE Antennas and Propagation Society International Symposium 2006, pp. 4183-4186, 2006.
[27] A. Pirhadi, F. Keshmiri, and M. Hakkak, "Design of dual-band low profile high directive EBG resonator antenna, using single layer frequency selective surface (FSS) superstrate," IEEE Antennas and Propagation Society International Symposium 2006, pp. 3005-3008, 2006.
[28] Y. J. Lee, J. Yeo, R. Mittra, and W. S. Park, "Design of a high-directivity Electromagnetic Band Gap (EBG) resonator antenna using a frequency-selective surface (FSS) superstrate," Microwave and Optical Technology Letters, vol. 43, pp. 462-467, Dec 2004.
[29] D. Betancourt, A. Ibanez, and C. del Rio, "Antenna characteristics enhancement using patch-slot-patch (PSP) superstrates," Microwave and Optical Technology Letters, vol. 48, pp. 902-906, May 2006.
[30] Z. C. Ge, W. X. Zhang, Z. G. Liu, and Y. Y. Gu, "Broadband and high-gain printed antennas constructed from Fabry-Perot resonator structure using EBG or FSS cover," Microwave and Optical Technology Letters, vol. 48, pp. 1272-1274, Jul 2006.
[31] N. Guerin, S. Enoch, G. Tayeb, P. Sabouroux, P. Vincent, and H. Legay, "A metallic Fabry-Perot directive antenna," IEEE Transactions on Antennas and Propagation, vol. 54, pp. 220-224, Jan 2006.
[32] D. H. Lee, Y. J. Lee, J. Yeo, R. Mittra, and W. S. Park, "Design of metamaterial superstrates and substrates for directivity and port isolation enhancement of a dual-frequency dual-polarization microstrip antenna," Microwave and Optical Technology Letters, vol. 48, pp. 1873-1876, Sep 2006.
[33] A. Pirhadi, M. Hakkak, and F. Keshmiri, "Using Electromagnetic Bandgap Superstrate to enhance the bandwidth of Probe-Fed microstrip antenna," Progress in Electromagnetics Research-PIER, vol. 61, pp. 215-230, 2006.
[34] D. H. Lee, Y. J. Lee, J. Yeo, R. Mittra, and W. S. Park, "Design of novel thin frequency selective surface superstrates for dual-band directivity enhancement," IET Microwaves Antennas & Propagation, vol. 1, pp. 248-254, Feb 2007.
[35] D. H. Lee, Y. J. Lee, J. Yeo, R. Mittra, and W. S. Park, "Directivity enhancement of circular polarized patch antenna using ring-shaped frequency selective surface superstrate," Microwave and Optical Technology Letters, vol. 49, pp. 199-201, Jan 2007.
[36] O. Roncière, B. A. Arcos, R. Sauleau, K. Mahdjoubi, and H. Legay, "Radiation performance of purely metallic waveguide-fed compact Fabry-Perot antennas for space applications," Microwave and Optical Technology Letters, vol. 49, pp. 2216-2221, 2007.
[37] R. Janaswamy and S. W. Lee, "Scattering from dipoles loaded with diodes," IEEE Transactions on Antennas and Propagation, vol. 36, pp. 1649-1651, Nov 1988.
[38] W. W. Lam, C. F. Jou, H. Z. Chen, K. S. Stolt, N. C. Luhmann, and D. B. Rutledge, "Millimeter-wave diode-grid phase shifters," IEEE Transactions on Microwave Theory and Techniques, vol. 36, pp. 902-907, May 1988.
[39] T. K. Chang, R. J. Langley, and E. Parker, "An active square loop frequency selective surface," IEEE Microwave and Guided Wave Letters, vol. 3, pp. 387-388, 1993.
[40] L. B. Sjogren, H. X. L. Liu, F. Wang, T. Liu, X. H. Qin, W. S. Wu, E. Chung, C. W. Domier, and N. C. Luhmann, "A monolithic diode-array millimeter-wave beam transmittance controller," IEEE Transactions on Microwave Theory and Techniques, vol. 41, pp. 1782-1790, Oct 1993.
[41] T. K. Chang, R. J. Langley, and E. A. Parker, "Active frequency-selective surfaces," IEE Proceedings-Microwaves Antennas and Propagation, vol. 143, pp. 62-66, Feb 1996.
[42] B. M. Cahill and E. A. Parker, "Field switching in an enclosure with active FSS screen," Electronics Letters, vol. 37, pp. 244-245, Feb 2001.
[43] C. Mias, "Waveguide and free-space demonstration of tunable frequency selective surface," Electronics Letters, vol. 39, pp. 850-852, May 2003.
[44] B. Schoenlinner, A. Abbaspour-Tamijani, L. C. Kempel, and G. M. Rebeiz, "Switchable low-loss RF MEMS Ka-band frequency-selective surface," IEEE Transactions on Microwave Theory and Techniques, vol. 52, pp. 2474-2481, Nov 2004.
[45] A. Tennant and B. Chambers, "Adaptive radar absorbing structure with PIN diode controlled active frequency selective surface," Smart Materials & Structures, vol. 13, pp. 122-125, Feb 2004.
[46] Y. M. Lu, L. P. B. Katehi, and D. Peroulis, "High-power MEMS varactors and impedance tuners for millimeter-wave applications," IEEE Transactions on Microwave Theory and Techniques, vol. 53, pp. 3672-3678, Nov 2005.
[47] C. Mias, "Varactor-tunable frequency selective surface with resistive-lumped-element biasing grids," IEEE Microwave and Wireless Components Letters, vol. 15, pp. 570-572, Sep 2005.
[48] T. K. Chang, R. J. Langley, and E. A. Parker, "Frequency-selective surfaces on biased ferrite substrates," Electronics Letters, vol. 30, pp. 1193-1194, Jul 1994.
[49] G. Y. Li, Y. C. Chan, T. S. Mok, and J. C. Vardaxoglou, "Analysis of frequency-selective surfaces on a biased ferrite substrate," International Journal of Electronics, vol. 78, pp. 1159-1175, Jun 1995.
[50] Y. C. Chan, G. Y. Li, T. S. Mok, and J. C. Vardaxoglou, "Analysis of a tunable frequency-selective surface on an in-plane biased ferrite substrate," Microwave and Optical Technology Letters, vol. 13, pp. 59-63, Oct 1996.
[51] J. P. Gianvittorio, J. Zendejas, Y. Rahmat-Samii, and J. W. Judy, "MEMS enabled reconfigurable frequency selective surfaces: design, simulation, fabrication, and measurement," IEEE Antennas and Propagation Society International Symposium, pp. 404-407 vol.2, 2002.
[52] J. P. Gianvittorio, J. Zendejas, Y. Rahmat-Samii, and J. Judy, "Reconfigurable MEMS-enabled frequency selective surfaces," Electronics Letters, vol. 38, pp. 1627-1628, Dec 2002.
[53] T. K. Wu, Frequcncy Selective Surface and Grid Array: John Wiley & Sons, Inc., 1995.
[54] M. V. K. Chari and S. J. Salon, Numerical Methods in Electromagnetism: Academic Press, 2000.
[55] 劉修源, 電磁晶體模擬計算分析與元件設計: 國立清華大學工程與系統科學研究所碩士論文, 2005.
[56] C. Kittel, Introduction to Solid State Physics: John Wiley & Sons, Inc., 2004.
[57] Ansoft HFSS 輔助說明.
[58] D. M. Pozar, Microwave Engineering, 3 ed.: John Wiley & Sons, Inc., 2005.
[59] J. F. White, Microwave Semiconductor Engineering: New York: Van Nostrand-Reinhold, 1982.
[60] 張吉本, 應用於高頻電磁晶體材料之研究: 國立清華大學工程與系統科學研究所博士論文, 2006.
[61] 呂常讚, 以頻域Galerkin法分析頻率選擇表面之反射及穿透係數: 國立台灣大學應用力學研究所碩士論文, 2005.
[62] D. K. Cheng, Field and Wave Electromagnetics, 2 ed.: John Wiley & Sons, Inc., 1989.
[63] R. E. Collin, Foundations For Microwave Engineering, 2 ed.: McGraw-Hill, Inc., 1992.
[64] J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals : modeling the flow of light. Princeton,N.J.: Princeton University Press, 1995.
[65] W. L. Stutzman and G. A. Thiele, Antenna Theory and Design, 2 ed.: John Wiley & Sons, Inc., 1998.
[66] R. Garg, P. Bhartia, I. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook. Boston London: Artech House, 2001.
[67] B. Monacelli, J. B. Pryor, B. A. Munk, D. Kotter, and G. D. Boreman, "Infrared frequency selective surface based on circuit-analog square loop design," IEEE Transactions on Antennas and Propagation, vol. 53, pp. 745-752, Feb 2005.