研究生: |
黃思晴 Huang, Szu-Ching |
---|---|
論文名稱: |
運用生物可分解高分子與礦物質開發孔洞結構之骨骼替代物 Synthesis of Porous Biodegradable Polymeric Scaffolds with Bone Minerals as Bone Substitute |
指導教授: |
王潔
Wang, Jane |
口試委員: |
賴伯亮
陳怡文 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 79 |
中文關鍵詞: | 生物可降解 、高分子 、骨頭再生 、組織工程 、孔洞支架 |
外文關鍵詞: | Biodegradable, Polymer, Bone regeneration, Tissue engineering, Porous scaffold |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
骨組織再生對於骨頭受損之病人十分重要,而骨支架移植是骨折及腫瘤手術後常用於刺激骨再生的治療方式;自體、異體與人造支架是最為常見的骨頭移植物,其中人造支架能夠引發較少的排斥免疫反應。在此研究中,利用聚甘油癸二酸酯(PGS)和聚(甘油癸二酸)丙烯酸酯(PGSA)混摻骨組織中常見之礦物質,進一步製成具有孔洞結構的骨頭移植物。
本研究可分為兩個部分:首先,PGS孔洞支架係經由鹽析法而成,骨頭磷酸鹽類hydroxyapatite(HAP)與whitlockite(WH)也一併加入結構當中增強機械強度及骨傳導性、骨誘導性,並測試孔洞大小及礦物質比例對性質所造成的影響;第二,藉由3D列印技術,製造出PGSA孔洞結構,控制孔洞形狀與分佈進而獲得不同性質的骨頭支架。
PGS孔洞結構具有高孔隙率(約80%)與高滲透率(1到8 m2),在加入礦物質後明顯提高其壓縮強度;PGS支架的降解性也受孔洞大小、礦物質比例影響。在細胞培養實驗中,可以看出材料的滲透率影響細胞生長;PGS支架在動物實驗當中呈現低排斥性,血管新生的現象也表示此移植物有助於組織再生。不同礦物質對於PGS孔洞支架有不同的影響,在HAP和WH相比之下,WH的高溶解性與低強度影響了PGS/WH材料的機械與降解性質。而細胞培養中,WH的高誘導性並未加強MC3T3-E1分化的基因表現。
PGSA支架有較PGS高的壓縮強度、較低的降解速度。PGSA孔洞材料不如PGS材料受到滲透率的限制,HAP所具備的骨傳導性能高度展露,並促進細胞在支架上的生長。PGSA支架的性質受孔洞大小、分佈等影響,也因此能藉由設計不同3D結構獲得符合目標組織所需的性質結構。藉由初步的測試,PGS/mineral與PGSA/mineral孔洞支架表現出高生物相容性,而可調控的機械與降解性質,搭配高孔隙率與滲透率,更有利於這兩種材料在組織工程上的應用。
Bone grafting is a common treatment for bone fracture and tumor by facilitating the regeneration of bone tissue. Autologous, allologous or synthetic grafts are often used in bone grafting, and implantation of synthetic scaffold causes less rejection and inflammation compared to ordinary bone graft. In this project, synthesis of biodegradable porous scaffold for orthopedic implant was developed. Poly(glycerol sebacate) (PGS) and poly(glycerol sebacate) acrylate (PGSA) were fabricated into porous scaffolds with the supplement of bone minerals.
First, PGS porous structure was manufactured by salt-leaching method. Hydroxyapatite (HAP) or whitlockite (WH) was added to increase mechanical strength and osteoconduction. Effects of different pore sizes and mineral ratio were studied. Second, PGSA porous structure was manufactured by 3D printing technique. Mechanical and physiological properties were obtained by designing different pore structure.
Porosity and permeability tests showed that porosity of PGS scaffolds remained 80% between different batches, with relatively high hydraulic conductivity compared to other common bone scaffolds. The compression strength was also enhanced by adding HAP or WH. Enzymatic degradation test showed that polymer erosion rate was effect by total surface area and permeability. In cell culture test, cell viability was affected by permeability of scaffolds. Minimum inflammation and angiogenesis were observed after 3 months implantation.
Compared between HAP and WH scaffolds, PGS/WH scaffolds had higher degradation rate but lower compressive strength, due to the relatively high solubility and low mechanical strength of WH mineral. On the other hand, it showed that WH scaffolds were less osteoinductive than HAP scaffolds in MC3T3-E1 cell differentiation.
PGSA porous scaffolds had higher compressive strength and lower degradation rate than PGS scaffolds. With similar permeability of PGSA and PGSA/HAP scaffolds, viability of MC3T3-E1 cells was higher on osteoconductive PGSA/HAP scaffolds. Properties of PGSA porous scaffolds were affected by controllable pore sizes and arrangements. Therefore, with various pore construction, PGSA scaffolds with desirable characteristics could be fabricated.
PGS/HAP and PGSA/HAP porous scaffolds with good biocompatibility were successfully fabricated. Biodegradability and mechanical strength could be modified for medical applications by changing the pore size and mineral ratio. From these results, it is believed these biodegradable porous substitutes are worth for further investigation and utilization of the porous scaffolds in clinical practice is promising.
1. Taiwan Organ Registry and Sharing Center. https://www.torsc.org.tw/.
2. Nerem, R. M., Cellular Engineering. Annals of Biomedical Engineering 1991, 19, 529-545.
3. Vacanti, C. A., History of Tissue Engineering and A Glimpse Into Its Future. Tissue Engineering 2006, 12 (5), 1137-1142.
4. Puelacher, W. C.; Mooney, D.; Langer, R.; Upton, J.; Vacanti, J. P.; Vacanti, C. A., Design of Nasoseptal Cartilage Replacements Synthesized From Biodegradable Polymers and Chondrocytes Biomaterials 1994, 15 (10), 774-778.
5. Vacanti, J. P.; Langer, R., Tissue Engineering: the Design and Fabrication of Living Replacement Devices for Surgical Reconstruction and
Transplantation. Molecular Medicine 1999, 354, 32-34.
6. Ige, O. O.; Umoru, L. E.; Aribo, S., Natural Products: A Minefield of Biomaterials. ISRN Materials Science 2012, 2012, 1-20.
7. Howard, D.; Buttery, L. D.; Shakesheff, K. M.; Roberts, S. J., Tissue Engineering: Strategies, Stem Cells and Scaffolds. Journal of Anatomy 2008, 213, 66-72.
8. Langer, R.; Vacanti, J. P., Tissue Engineering. Science 1993, 260, 920-926.
9. Babensee, J. E.; McIntire, L. V.; Mikos, A. G., Growth Factor Delivery for Tissue Engineering. Pharmaceutical Research 2000, 17 (5), 497-504.
10. Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P., Molecular Biology of the Cell. 4th edition. Garland Science: 2002.
11. Dvir, T.; Timko, B. P.; Kohane, D. S.; Langer, R., Nanotechnological Strategies for Engineering Complex Tissues. Nature Nanotechnology 2010, 6, 13-22.
12. Hynes, R. O., The Extracellular Matrix: Not Just Pretty Fibrils. Science 2009, 326, 1216-1219.
13. Ott, H. C.; Matthiesen, T. S.; Goh, S.-K.; Black, L. D.; Kren, S. M.; Netoff, T. I.; Taylor, D. A., Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart. Nature Medicine 2008, 14, 213-221.
14. Grayson, W. L.; Fröhlich, M.; Yeager, K.; Bhumiratana, S.; Chan, M. E.; Cannizzaro, C.; Wan, L. Q.; Liu, X. S.; Guo, X. E.; Vunjak-Novakovic, G., Engineering anatomically shaped human bone grafts. Proceedings of the National Academy of Sciences 2010, 107, 3299-3304.
15. Institute, U. S. N. C., Cross-section details of a long bone. 2011.
16. Giannoudis, P. V.; Dinopoulos, H.; Tsiridis, E., Bone substitutes: An update. Injury 2005, 36S, S20-S27.
17. Moore, W. R.; Graves, S. E.; Bain, G. I., Synthetic Bone Graft Substitutes. ANZ Journal of Surgery 2001, 71, 354-361.
18. Fröhlich, M.; Grayson, W. L.; Wan, L. Q.; Marolt, D.; Drobnic, M.; Vunjak-Novakovic, G., Tissue Engineered Bone Grafts: Biological Requirements, Tissue Culture and Clinical Relevance. Current Stem Cell Research & Therapy 2008, 3, 254-264.
19. Williams, D. F., The Williams Dictionary of Biomaterials. Liverpool University Press: 1999; p 40.
20. Hutmacher, D. W., Scaffolds in tissue engineering bone and cartilage. Biomaterials 2000, 21, 2529-2543.
21. O'Brien, F. J., Biomaterials & scaffolds for tissue engineering. Materials Today 2011, 14, 88-95.
22. Gotman, I., Characteristics of Metals Used in Implants. Journal of Endourology 1997, 11 (6), 383-389.
23. Albrektsson, T.; Brånemark, P. I.; Hansson, H. A.; Lindström, J., Osseointegrated Titanium Implants. Acta Orthopaedica Scandinavica 1981, 52, 155-170.
24. Friedenstein, A. Y., Induction of bone tissue by transitional epithelium. Clinical Orthopaedics & Related Research 1968, 59, 21-38.
25. Amini, A. R.; Laurencin, C. T.; Nukavarapu, S. P., Bone Tissue Engineering: Recent Advances and Challenges. Critical Reviews™ in Biomedical Engineering 2012, 40 (5), 363-408.
26. Burg, K. J. L.; Porter, S.; Kellam, J. F., Biomaterial developments for bone tissue engineering. Biomaterials 2000, 21 (23), 2347-2359.
27. Gentile, P.; Chiono, V.; Carmagnola, I.; Hatton, P. V., An Overview of Poly(lactic-co-glycolic) Acid (PLGA)-Based Biomaterials for Bone Tissue Engineering International Journal of Molecular Sciences 2014, 15, 3640-3659.
28. Rezwan, K.; Chen, Q. Z.; Blaker, J. J.; Boccaccini, A. R., Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 2006, 27 (18), 3413-3431.
29. Wei, G.; Ma, P. X., Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials 2004, 25 (19), 4749-4757.
30. Zeltinger, J.; Sherwood, J. K.; Graham, D. A.; Müeller, R.; Griffith, L. G., Effect of pore size and void fraction on cellular adhesion, proliferation, and matrix deposition. Tissue Engineering 2004, 7, 557-572.
31. Murphy, C. M.; O'Brien, F. J.; Little, D. G.; Schindeler, A., Cell-Scaffold Interactions in the Bone Tissue Engineering Triad. European Cells and Materials 2013, 26, 120-132.
32. Klawitter, J. J.; Bagwell, J. G.; Weinstein, A. M.; Sauer, B. W.; Pruitt, J. R., An Evaluation of Bone Growth into Porous High Density Polyethylene. Journal of Biomedical Materials Research 1976, 10, 311-323.
33. Tsuruga, E.; Takita, H.; Itoh, H.; Wakisaka, Y.; Kuboki, Y., Pore Size of Porous Hydroxyapatite as the Cell-Substratum Controls BMP-Induced Osteogenesis. the Journal of Biochemistry 1997, 121 (2), 317-324.
34. Karageorgiou, V.; Kaplan, D., Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 2005, 26 (27), 5475-5491.
35. Fung, Y. C., Biomechanics: Mechanical Properties of Living Tissues, Second Edition. Springer: 1993; p 10.
36. Griffith, L. G., Emerging Design Principles in Biomaterials and Scaffolds for Tissue Engineering. Annals of the New York Academy of Sciences 2002, 961, 83-95.
37. Yang, S.; Leong, K.-F.; Du, Z.; Chua, C.-K., The Design of Scaffolds for Use in Tissue Engineering. Part I. Traditional Factors. Tissue Engineering 2001, 7 (6), 679-689.
38. SD, B., Biostability of materials and implants. Journal of Long-Term Effects of Medical Implants 1991, 1 (1), 89-106.
39. Kokubo, T.; Kim, H.-M.; Kawashita, M., Novel bioactive materials with different mechanical properties. Biomaterials 2003, 24 (13), 2161-2175.
40. Jiang, T.; Abdel-Fattah, W. I.; Laurencin, C. T., In vitro evaluation of chitosan/poly(lactic acid-glycolic acid) sintered microsphere scaffolds for bone tissue engineering. Biomaterials 2006, 27 (28), 4894-4903.
41. Deville, S.; Saiz, E.; Tomsia, A. P., Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biomaterials 2006, 27 (32), 5480-5489.
42. Sachlos, E.; Czernuszka, J. T., Making Tissue Engineering Scaffolds Work. Review on the Application of Solid Freeform Fabrication Technology to the Production of Tissue Engineering Scaffolds. European Cells and Materials 2003, 5, 29-40.
43. Melchels, F. P. W.; Feijen, J.; Grijpma, D. W., A review on stereolithography and its applications in biomedical engineering. Biomaterials 2010, 31 (24), 6121-6130.
44. Lee, K.-W.; Wang, S.; Fox, B. C.; Ritman, E. L.; Yaszemski, M. J.; Lu, L., Poly(propylene fumarate) Bone Tissue Engineering Scaffold Fabrication Using Stereolithography: Effects of Resin Formulations and Laser Parameters. Biomacromolecules 2007, 8, 1077-1084.
45. Sin, D.; Miao, X.; Liu, G.; Wei, F.; Chadwick, G.; Yan, C.; Friis, T., Polyurethane (PU) scaffolds prepared by solvent casting/particulate leaching (SCPL) combined with centrifugation. Materials Science and Engineering: C 2010, 30 (1), 78-85.
46. Albrektsson, T.; Johansson, C., Osteoinduction, osteoconduction and osseointegration. European Spine Journal 2001, 10, S96-S101.
47. Ratner, B. D.; Hoffman, A. S.; Schoen, F. J.; Lemons, J. E., Biomaterials Science, Third Edition: An Introduction to Materials in Medicine. Academic Press: 2012; p xxviii-xxix.
48. Vats, A.; Tolley, N. S.; Polak, J. M.; Gough, J. E., Scaffolds and biomaterials for tissue engineering: a review of clinical applications. Clinical Otolaryngology 2003, 28 (3), 165-172.
49. Wang, Y.; Ameer, G. A.; Sheppard, B. J.; Langer, R., A tough biodegradable elastomer. Nature Biotechnology 2002, 20, 602-606.
50. Chiao, M.; Chiao, J.-C., Biomaterials for MEMS. Pan Stanford: 2011; p 41.
51. Chen, Q.-Z.; Bismarck, A.; Hansen, U.; Junaid, S.; Tran, M. Q.; Harding, S. E.; Ali, N. N.; Boccaccini, A. R., Characterisation of a soft elastomer poly(glycerol sebacate) designed to match the mechanial properties of myocardial tissue. Biomaterials 2008, 29 (1), 47-57.
52. Wang, Y.; Kim, Y. M.; Langer, R., In vivo degradation characteristics of poly(glycerol sebacate). Journal of Biomedical Materials Research 2003, 66A (1), 192-197.
53. Göpferich, A., Mechanisms of polymer degradation and erosion. Biomaterials 1996, 17, 103-114.
54. Rai, R.; Tallawi, M.; Grigore, A.; Boccaccini, A. R., Synthesis, properties and biomedical applications of poly(glycerol sebacate) (PGS): A review. Progress in Polymer Science 2012, 37 (8), 1051-1078.
55. Nijst, C. L. E.; Bruggeman, J. P.; Karp, J. M.; Ferreira, L.; Zumbuehl, A.; Bettinger, C. J.; Langer, R., Synthesis and Characterization of Photocurable Elastomers from Poly(glycerol-co-sebacate). Biomacromolecules 2007, 8 (10), 3067-3073.
56. Hall, J. E., Guyton and Hall Textbook of Medical Physiology. Elsevier Health Sciences: 2015; p 981.
57. Straub, D. A., Calcium Supplementation in Clinical Practice: A Review of Forms, Doses, and Indications. Nutrition in Clinical Practice 2007, 22 (3), 286-296.
58. Yuan, H.; Kurashina, K.; Bruijn, J. D. d.; Li, Y.; Groot, K. d.; Zhang, X., A preliminary study on osteoinduction of two kinds of calcium phosphate ceramics. Biomaterials 1999, 20 (19), 1799-1806.
59. Jin, Q.-M.; Takita, H.; Kohgo, T.; Atsumi, K.; Itoh, H.; Kuboki, Y., Effects of geometry of hydroxyapatite as a cell substratum in BMP-induced ectopic bone formation. Journal of Biomedical Materials Research 2000, 51, 491-499.
60. Warnke, P. H.; Seitz, H.; Warnke, F.; Becker, S. T.; Sivananthan, S.; Sherry, E.; Liu, Q.; Wiltfang, J.; Douglas, T., Ceramic scaffolds produced by computer-assisted 3D printing and sintering: Characterization and biocompatibility investigations. Journal of Biomedical Materials Research 2010, 93B (1), 212-217.
61. Wu, T.-J.; Huang, H.-H.; Lan, c.-W.; Lin, C.-H.; Hsu, F.-Y.; Wang, Y.-J., Studies on the microspheres comprised of reconstituted collagen and hydroxyapatite. Biomaterials 2004, 25 (4), 651-658.
62. Song, W.; Markel, D. C.; Wang, S.; Shi, T.; Mao, G.; Ren, W., Electrospun polyvinyl alcohol-collagen-hydroxyapatite nanofibers: a biomimetic extracellular matrix for osteoblastic cells. Nanotechnology 2012, 23 (11), 1-15.
63. Rizzi, S. C.; Heath, D. J.; Coombes, A. G. A.; Bock, N.; Textor, M.; Downes, S., Biodegradable polymer/hydroxyapatite composites: Surface analysis and initial attachment of human osteoblasts. Journal of Biomedical Materials Research 2001, 55 (4), 475-486.
64. Douglas, T.; Pamula, E.; Hauk, o.; Wiltfang, J.; Sivananthan, S.; Sherry, E.; Warnke, P. H., Porous polymer/hydroxyapatite scaffolds: characterization and biocompatibility investigations. Journal of Materials Science: Materials in Medicine 2009, 20 (9), 1909-1915.
65. Sun, F.; Zhou, H.; Lee, J., Various preparation methods of highly porous hydroxyapatite/polymer nanoscale biocomposites for bone regeneration. Acta Biomaterialia 2011, 7 (11), 3813-3828.
66. Jarcho, M.; Salsbury, R. L.; Thomas, M. B.; Doremus, R. H., Synthesis and fabrication of β-tricalcium phosphate (whitlockite) ceramics for potential prosthetic applications. Journal of Materials Science 1979, 14, 142-150.
67. Jarcho, M.; Bolen, C. H.; Thomas, M. B.; Bobick, J.; Kay, J. F.; Doremus, R. H., Hydroxylapatite synthesis and characterization in dense polycrystalline form. Journal of Materials Science 1976, 11, 2027-2035.
68. Jang, H. L.; Zheng, G. B.; Park, J.; Kim, H. D.; Baek, H.-R.; Lee, H. K.; Lee, K.; Han, H. N.; Lee, C.-K.; Hwang, N. S.; Lee, J. H.; Nam, K. T., In Vitro and In Vivo Evaluation of Whitlockite Biocompatibility: Comparative Study with Hydroxyapatite and β-Tricalcium Phosphate. Advanced Healthcare Materials 2015, 5 (1), 128-136.
69. Boivin, G.; Bala, Y.; Doublier, A.; Farlay, D.; Ste-Marie, L. G.; Meunier, P. J.; Delmas, P. D., The role of mineralization and organic matrix in the microhardness of bone tissue from controls and osteoporotic patients. Bone 2008, 43 (3), 532-538.
70. Dhert, W. J. A.; Thomsen, P.; Blomgren, A. K.; Esposito, M.; Ericson, L. E.; Verbout, A. J., Integration of press-fit implants in cortical bone: a study on interface kinetics. Journal of Biomedical Materials Research 1998, 41 (4), 574-583.
71. Hunziker, E. B., Mechanism of longitudinal bone growth and its regulation by growth plate chondrocytes. Microscopy Research and Technique 1994, 28 (6), 505-519.
72. Adams, C. S.; Mansfield, K.; Perlot, R. L.; Shapiro, I. M., Matrix Regulation of Skeletal Cell Apoptosis: ROLE OF CALCIUM AND PHOSPHATE IONS. Journal of Biological Chemistry 2001, 276 (23), 20316-20322.
73. Castiglioni, S.; Cazzaniga, A.; Albisetti, W.; Maier, J. A. M., Magnesium and Osteoporosis: Current State of Knowledge and Future Research Directions. Nutrients 2013, 5 (8), 3022-3033.
74. Zhang, Y.; Xu, J.; Ruan, Y. C.; Yu, M. K.; O'Laughlin, M.; Wise, H.; Chen, D.; Tian, L.; Shi, D.; Wang, J.; Chen, S.; Feng, J. Q.; Chow, D. H. K.; Xie, X.; Zheng, L.; Huang, L.; Huang, S.; Leung, K.; Lu, N.; Zhao, L.; Li, H.; Zhao, D.; Guo, X.; Chan, K.; Witte, F.; Chan, H. C.; Zheng, Y.; Qin, L., Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats. Nature Medicine 2016, 22, 1160-1169.
75. Muskat, M., The Flow of Fluids Through Porous Media. Journal of Applied Physics 1937, 8 (274-282).
76. Dabrowski, B.; Swieszkowski, W.; Godlinski, D.; Kurzydlowski, K. J., Highly porous titanium scaffolds for orthopaedic applications. Journal of Biomedical Materials Research 2010, 95B (1), 53-61.
77. Rootare, H. M.; Deitz, V. R.; Carpenter, F. G., Solubility Product Phenomena in Hydroxyapatite-Water Systems. Journal of Colloid Science 1962, 17, 179-206.
78. Koutsoukos, P.; Amjad, Z.; Tomson, M. B.; Nancollas, G. H., Crystallization of Calcium Phosphates. A Constant Composition Stydy. Journal of American Chemical Society 1980, 102 (5), 1553-1557.
79. Kim, H. D.; Jang, H. L.; Ahn, H.-Y.; Lee, H. K.; Park, J.; Lee, E.-s.; Lee, E. A.; Jeong, Y.-H.; Kim, D.-G.; Nam, K. T.; Hwang, N. S., Biomimetic whitlockite inorganic nanoparticles-mediated in situ remodeling and rapid bone regeneration. Biomaterials 2017, 112, 31-43.
80. Sudo, H.; Kodama, H.-A.; Amagai, Y.; Yamamoto, S.; Kasai, S., In Vitro Differentiation and Calcification in a New Clonal Osteogenic Cell Line Derived from Newborn Mouse Calvaria The Journal of Cell Biology 1983, 96, 191-198.
81. Thomopoulos, S.; Birman, V.; Genin, G. M., Structural Interfaces and Attachments in Biology. Springer Verlag: 2012; p 303.