簡易檢索 / 詳目顯示

研究生: 鄭佳媛
Cheng, Chia-Yuan
論文名稱: 以鎖定延遲迴路為基礎的 多裸晶時脈訊號同步自動化方案
Automatic DLL-Based Clock Synchronization Scheme for Multi-Die ICs
指導教授: 黃錫瑜
Huang, Shi-Yu
口試委員: 吳誠文
Wu, Cheng-Wen
李建模
Li, Chien-Mo
李進福
Li, Jin-Fu
趙家佐
Chao, Chia-Tso
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 46
中文關鍵詞: 時脈訊號偏差量時脈訊號同步鎖延遲迴路多裸晶晶片鎖延遲迴路編譯軟體
外文關鍵詞: Clock Skew, Clock Synchronization, Delay-Locked Loop, Multi-Die IC, DLL Compiler
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 多裸晶封裝是現今科技的新趨勢,但跨裸晶時脈訊號同步也是伴隨而來的難題。跨裸晶時脈訊號同步的難題在於將各個裸晶的時脈訊號網路連成一個同步的網路比單純設計一個裸晶內部的時脈訊號網路困難許多。各個裸晶大多是獨立設計,系統整合商難以掌握裸晶內部的狀況。因此難以達到跨裸晶時脈訊號同步。在這篇論文中,我們通過結合鎖延遲迴路(DLL)來校正,以達成全晶片同步的效果。在每個裸晶中植入一個鎖延遲迴路,此鎖延遲迴路可由鎖延遲迴路編譯軟體產生,以便同步校正各個裸晶中的時脈訊號延遲(從時脈訊號源到各個正反器的時脈訊號端口)。我們也建構出一圖形使用者介面,以便於使用者簡單操作我們的自動化方案。另外圖形使用者介面也能產生此自動化方案所需的控制器。
    此自動化方案的優點為可以獨立設計每個晶片的時脈訊號網路,並在晶片工作時,使得整個晶片的時脈訊號偏差量仍可動態的反應其工作環境並達到最小化。在研究實驗中,我們使用台積電90奈米製程來實現虛擬的四裸晶晶片,並以此虛擬的四裸晶晶片做實驗,應用此方案後,時脈訊號偏差量 (Clock Skew) 可從233皮秒 (ps) 降至34皮秒。在電壓改變的狀況下,四裸晶晶片仍可維持微小的訊號偏差量。在鎖延遲迴路鎖定後,改變的電源電壓,最大的時脈訊號偏差量為45皮秒。


    Multi-die packaging is now a new trend in today's technology, but chip-level clock synchronization is a complication. The challenge of synchronizing the clock network across multi-die is harder than synchronizing the clock network within a die. Most of the dies are design independently, so that system integrators cannot control the clock network in every die. It is difficult to achieve chip-level clock synchronization. In this thesis, we use Delay-Locked Loops (DLLs) to reach the goal. A DLL is inserted in each die, which can be generated by a DLL compiler, to dynamically correct the clock latency (from a clock source to each clock port of flip-flop) in every functional die. We have also constructed a graphical user interface that allows users to easily manipulate our automatic scheme. In addition, the graphical user interface can generate the controller needed for this automatic scheme.
    The advantage of this automatic scheme is that the clock network of each chip can be designed independently. When the chip is in operation, the clock skew of the whole chip can still be dynamically responded to and minimized. In the research experiment, we use TSMC's 90-nanometer process to build a pseudo 4-die design. After applying this scheme, the clock skew can be reduced from 233ps down to 34ps. In the case of voltage variation, 4-die IC can still maintain a slight clock skew. After the DLLs locked, the maximum clock skew is 45ps under power supply variation.

    Abstract i 摘要 ii 致謝 iii Content iv List of Figures vi List of Tables viii Chapter 1 Introduction 1 1.1 Introduction 1 1.2 Thesis Organization 4 Chapter 2 Preliminaries 5 2.1 Terminologies 5 2.2 Delay-Locked Loop (DLL) 8 2.2.1 Phase Detector (PD) 10 2.2.2 Tunable Delay Line 12 2.2.3 Controller 17 2.2.4 Delay Profile of the Delay Line 18 Chapter 3 Proposed Scheme 19 3.1 Basic Idea of DLL-Assisted Clock Synchronization 19 3.2 Design and Tuning Flow 22 Chapter 4 Experimental Results 28 4.1 Wide-Range DLL 28 4.2 Baseline Design with the DLLs 30 4.3 DLL-Assisted Design 33 4.4 VDD Variation 36 Chapter 5 Graphical User Interface (GUI) 38 Chapter 6 Discussion 41 Chapter 7 Conclusion 43 References 44

    [1] C.-F. Tseng, C.-S. Liu, C.-H. Wu, D. Yu "InFO (Wafer Level Integrated Fan-Out) Technology" IEEE Electronic Components and Technology Conf., pp. 1–6, 2016.
    [2] K. Arshak, O. Abubaker, and E. Jafer, " Design and Simulation Difference Types CMOS Phase Frequency Detector for high Speed and low jitter PLL," IEEE International Caracas Conf. on Devices, Circuits and Systems, Vol. 1, pp. 20-25, 2011.
    [3] Y.-P. Zhou, Z.-Q. Lu, and Y.-Z. Ye, "A Double-Edge-Triggered Phase Frequency Detector for Low Jitter PLL," in International Conf. on Solid-State and Integrated Circuit Technology (ICSICT), pp.1963-1965, Oct. 2006.
    [4] D. Chung "Chip-package hybrid clock distribution network and DLL for low jitter clock delivery," IEEE J. Solid-State Circuits, Vol. 41, No. 1, pp. 274-286, Jan. 2006.
    [5] A. Allen J. Desai F. Verdico F. Anderson D. Mulvihill D. Krueger "Dynamic frequency- switching clock system on a quad-core Itanium processor," IEEE Int'l Solid-State Circuits Conf., pp. 62-63 2009.
    [6] T. Wu "Low-skew clock distribution using zero-phase-clock-buffer DLLs," IEEE Int'l Solid-State Circuits Conf., pp. 176-177 2010.
    [7] J.-W. Ke, S.-Y. Huang, C.-W. Tzeng, D.-M. Kwai, Y.-F. Chou, “Die-to-Die Clock Synchronization for 3-D IC Using Dual Locking Mechanism,” IEEE Trans. Circuits and Systems I, Reg Papers, Vol. 60, No. 4, pp. 908-917, Apr. 2013.
    [8] S.-Y. Huang, C.-C. Zheng, “Die-to-Die Clock Skew Characterization and Tuning for 2.5D ICs,” IEEE Symp. Asian Test Symposium. pp. 221-226, 2016.
    [9] H.-H. Chang J.-W. Lin C.-Y. Yang S.-I. Liu "A wide-range delay-locked loop with a fixed latency of one clock cycle" IEEE J. Solid-State Circuits, Vol. 37, No. 8, pp. 1021-1027, Aug. 2002.
    [10] B.-G. Kim L.-S. Kim "A 250-MHz–2-GHz wide-range delay-locked loop," IEEE J. Solid-State Circuits, Vol. 40, No. 6, pp. 1310-1321, June 2005.
    [11] T. Hamamoto "A 667-Mb/s operating digital DLL architecture for 512-Mb DDR SDRAM," IEEE J. Solid-State Circuits, Vol. 39, No. 1, pp. 194-206, Jan. 2004.
    [12] H.-H. Chang and S.-I. Liu "A wide-range and fast-locking all-digital cycle-controlled delay- locked loop," IEEE J. Solid-State Circuits, Vol. 40, No. 3, pp. 661-670, March 2005.
    [13] W.-J. Yun et al., “A 0.1-to-1.5 GHz 4.2 mW all-digital DLL with dual duty-cycle correction circuit and update gear circuit for DRAM in 66 nm CMOS technology,” IEEE Int'l Solid-State Circuits Conf., pp. 282–283. 2008.
    [14] M.-H. Hsieh, L.-H. Chen, S.-I. Liu, and C. C.-P. Chen, “A 6.7 MHz-to- 1.24 GHz 0.0318 mm fast-locking all-digital DLL in 90 nm CMOS,” in IEEE Int'l Solid-State Circuits Conf., pp. 244–245, 2012.
    [15] H.-W. Lee "A 1.0-ns/1.0-V delay-locked loop with racing mode and countered CAS latency controller for DRAM interfaces" IEEE J. Solid-State Circuits, Vol. 47, No. 6, pp. 1436-1447, June 2012.
    [16] J.-S. Wang, C.-Y. Cheng, J.-C. Liu, Y.-C. Liu, and Y.-M. Wang "A duty-cycle-distortion-tolerant half-delay-line low-power fast-lock-in all digital delay-locked loop," IEEE J. Solid- State Circuits, Vol. 45, No. 5, pp. 1036-1047, May 2010.
    [17] C.-Y. Cheng J.-S. Wang C.-T. Yeh J.-S. Sheu "Design of a 2.5-GHz 3-ps jitter 8-locking-cycle all-digital delay-locked loop with cycle-by-cycle phase adjustment," IEEE Symp. VLSI Circuits, pp. 186-187, 2012.
    [18] S.-B. Lim, H.-W. Lee, J. Song, and C. Kim, “A 247 W 800 Mb/s/pin DLL-based data self-aligner for through silicon via (TSV) interface,” IEEE J. Solid-State Circuits, Vol. 48, No. 3, pp. 711–723, March 2013.
    [19] P.-C. Huang and S.-Y. Huang, "Cell-Based Delay Locked Loop Compiler," Proc. of Int'l SoC Design Conf., Oct. 2016.

    QR CODE